P2P., DSM, and Other Products
from the Complexity Factory.

Willy: Zwaenepoel
EPFL

Impact of Research

Impact of Research

* Not so-great
= Many researeh ideas lost out
=« Many non-research developments won out

Impact of Research

* Not so-great
= Many research ideas have lost out
=« Many non-research developments won out

« Why is that?
= WWe make things too complex
= Not: things are too complex

Impact of Research

* Not so-great
= Many research ideas have lost out
=« Many non-research developments won out

« Why is that?
= WWe make things too complex
= Not: things are too complex

« Why?
= Publishing/reviewing pushes us to complexity:

Apologies, Caveats and Excuses

« Talk is-rather polemic in nature
....things are said: a little crassly

« \/arious other excuses:
« Jetlag, being dean,, ...

P2P

« Peer=to-peer
« No (central) server
« Easier toroperate, maintain, scale, make

more reliable ...
« Started as an application

* Proposed as an infrastructure for ailarge
number of applications

Research on P2P

« Concentrated: largely. on DHT's
« Log(n) access
« Chord, Pastry, ...

 Applications: backup, streaming, ...

The Problem with P2P

 VVery-little application: ether than illegal file
sharing

Reality Check

“ [i-we-have learned anything about
distributed computing over the last 25
years; It is that anything distributed Is

harder than anything centralized

Reasons for Distribution

«"You cannot handle it in one place
= Performance — controlled replication
« Availability — controlled replication

« Geographical distribution
= Google!
« lllegality — P2P
= From Napster to Gnutella, Kazaa, ...
= Raw’ traffic numbers are high
=« Much of It static
« Could be handled! by conventional replication (7)

Difficulties for P2P

*_ Hard-to find anything

« Hard.to' make anything secure
= Open Invitation to attack
= Actively used by RIAA (pollution attacks)

« Hard to write anything

Advantages for P2P Research

« Complex to.-find anything
« Complex to make anything| secure
« Complex to write anything

Advantages for P2P Research

« Complex: 1o find-anything
« Complex to make anything secure
« Complex to write anything

« Complexity begets papers
« P2P = Paper-to-Paper

There are Applications

« |Large file multicast
« Can be handled by very simple techniques
» BitTorrent

« |t should'worry us that these come firom
non-research corners ol the world!

Mirror, mirrer on the wall, ...

DSM

« Distributed shared memory
« Parallel computing on clusters
« Make It easier to write programs

« . Single:shared virtual address space
« Portions cached in physical memory
« Usually by page faulting

« TreadMarks (ParallelTieols)

Reality Check

« Cluster hardware only suitable for coarse-
grained-parallel computation

«*A fortiori true for DSM

Problems with Fine-Grained DSM

« Expensive synchronization

« Expensive fine-grained data sharing

= Smaller-than a page
* True sharing
« False sharing (can be solved)

Advantages for DSM Research

« Complex: fine-grain synchronization

« Complex fine-grain data sharing
= Compiler, language, runtime, ...

« Complexity begets papers. ...

TreadMarks

« Academic experience

= (Almost) every paper or grant for research;on
fine-grain DSV was aceepted

= (Almost) every paper or grant for research; on
coarse-grained DSIVI was rejected

* Industriall experience
= Only coarse-grain application
= Real applications: a page Is not large enough!

Coarse-grain Applications

« | arge-(independent) units of computation

« Large-chunks of data
= 1 page =4k
= Not very'large at all
= Page faulting brings inione page at a time
« Message passing brings in whole data segment at a
time (> page)
« Can be and was done with DSIVI
= Increase page size (1)

Competition is Message Passing

 MPI (Message Passing Interface)
« L ow abstraction

* Norroom for complexity fabrication
« As a result more successiul

« It should woerny: us that MPI did net come
from distributed systems researech but from
linear algebral

Server Performance

« At the beginning of the Internet boom,
server performance was badly lagging

« ‘Multithreaded or multiprocess servers
= Context switching
= LLocking

* Two types of selutions
s Exokernel
s Event-driven senrvers

Event-Driven Servers

« Events
= {ncoming request, i/o completion, ...

« Single thread, event loop

« Event handler per event

« Straight code (noiblocking)
= At end:

* nonblocking oK asynchronous 1/o
* create (hand-made) continuation

Advantages

* No“multithreading
= NO context switching
= No locking (at least on uniprocessor)

« Control ever order of event handling
= Not bound by OS scheduler

Flash

« Most-popular event-driven \Welb server
« Combined multithreaded!/ event-driven
« Many follow-ons

 IMimic Networking

Reality Check

“ |t’'s-too-complex

« Maybe Ph.D.s can figure it out

* Your average industry programmelr cannot
« Actually, most Ph.D.s can't either

« Many (expensive) bugs

How the Problem was Solved

« Linux O(1) thread scheduler

« L inux futex
= User-level locking
= No overhead if ho contention

* Benefits of event-driven remain
« But too small te: warrant complexity.

How the Problem was Solved

« The main servers are all process-based or
thread-based (Apache, MySQL)

It should worry.us that these servers did
not come: out of researech!

Painful Observations (1)

« Many research ideas, have not found much
application

*'Non-research designs have won out
« Has to do with this fabricated complexity.

Painful Observations (2)

 Has to-do with publishing/reviewing

= Simple papers tend to get rejected
= Complex papers tend to get In

Your Average Review Form

* Novelty

« Excitement
« Writing

« Confidence

Some Questions to Add?

« Does the added functienality justify the
Inerease in complexity?

*'Does the performance improvement Justify
the increase In complexity?

« Could this system be maintained by an
above-average programmer In industry/?

* Does this paper simplify: a knewn, selution
to a worthwhile problem:?

Some Likely Review Comments

* «-Incremental »
.« Engineering »
« « Nothing new:»
.« Boring »

It IS Possible

« \irtual - machines

« Provide simple solutions to real problems
= Server consolidation
= Migration

Virtual Machines

« \irtual-machine . monitor

« VMM provides a number ofi VIVIS
« IBM VM
= VMWare

= Xen
* Open-source
« Paravirtualization (VM ~ machine)

Provenance

« DISCO: a very complex OS for SVIPs

« \/MWare:

= Simplified to Linux/\AWindows on one machine
= Precise virtualization on x86 very complex

« Xen

= Paravirtualization to improve performance and
decrease complexity.
« VIVIMl less complex
« Guest OS (slightly) more complex
« Perfermance better (7)

The Way of Alll Technology.

« All'technology
= Becomes more complex on the inside
= Becomes less complex on the outside
« Examples: car, Windows (7!)

« Not sure It fully applies to software
= Most complex systems ever built
= Rare example of discrete complex system
= Maybe we are over the limit alreaay

Nonetheless

* Success = Interfaces defined early?

« Very.successful systems

= Apache, MySQL, MPI, VIMWare, Xen
» Interfaces stable (few iterations)

= Internal complexity grew.

« | ess successiul systems
= DSM, event-driven
= Interfaces unstable, complexified

Standardization (17)

* | am afraid some of It IS necessary.
« Find a way.through publishing| system

Other People’'s Advice

Lampson: « Keep it simple »
=~ [rue, but semewhat impractical
Einstein: « Everything should be as

simple as possible, but ne more than
that »

= Implement functionality at the right interiace
= Keep interfiaces stable

Lessons

« Brute force often (not always) works

« Our publishing and reviewing system
pUShes us In the opposite direction

More Lessons

 |t-is' the interface, stupid

« . I'he implementation can be complex

* The Interface has to be simple and stable

TThank you

