
A Simple Client Software Upgrade Enables Fast Handoff in
IEEE 802.11 Wireless Networks

Jaeouk Ok
The University of Tokyo
okjaeouk@mlab.t.u-

tokyo.ac.jp

Pedro Morales
The University of Tokyo

pedro@mlab.t.u-
tokyo.ac.jp

Hiroyuki Morikawa
The University of Tokyo

mori@mlab.t.u-
tokyo.ac.jp

1. INTRODUCTION
Handoff procedure in IEEE 802.11 wireless networks must

be accomplished with as little interruption as possible to
maintain the required quality of service (QoS). We have
developed a fast handoff scheme, called AuthScan, to re-
duce the time-consuming channel scanning latency. Auth-
Scan comprises two steps: First, a client caches its handoff
history with beacon information. Second, when in need of
handoff, a client transmits Authentication Request frames to
the selected Access Points (APs) from the cache instead of
broadcasting Probe Request frames like in active scan to dis-
cover the next AP. Our proposed method does not require
any support from the infrastructure network and improve
the efficiency of channel scanning. Furthermore, AuthScan
requires neither hardware upgrades to the client, nor any
modification to currently deployed APs. This paper presents
the theoretical handoff latency of AuthScan, the effective-
ness of our system through experiments, and the details of
our demonstration.

2. AUTHSCAN
AuthScan is a combined approach of a handoff history

cache [1] and selective unicast scan [2]. While the former
enables a client to scan only the channels where nearby APs
exist in habitual places, the latter enables to reduce un-
necessarily long waiting time at each channel. AuthScan
improves 1) AP selection propriety among a large number
of cached APs by comparing acquired signal strengths from
each of them right after handoff trigger, 2) handoff latency
by replacing broadcast Probe Requests with unicast Authen-
tication Requests to scan target APs.

2.1 Target AP Cache
AuthScan builds a target AP list by caching previous

handoff information. Caching does not require support from
infrastructure network, modifications to the protocols, hard-
ware upgrade to any devices, nor impose degradation in the
performance of data communication. All these benefits come

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

at the cost of unimproved support for a client’s unusual be-
havior like visiting a place for the first time.

The cache is initially populated at a stage when the hand-
off is achieved through conventional active or passive scan.
The reason for this is that the Authentication Response does
not contain some information found in Probe Responses or
beacons. Therefore, for successful completion of handoff, the
cache structure includes the BSSID of prior AP, the BSSID
of posterior AP, channel number, PHY type, capability in-
formation, SSID, the supported rates, PHY parameter sets,
and WPA parameters, etc. The recurrence of handoffs dur-
ing a fixed period is used to rearrange the order of target
APs in the list. The cache can be updated by either peri-
odic or on-demand active scan to accommodate the changes
of APs in the habitual places.

2.2 Handoff Procedure
When detecting the need for link-layer handoff based on

its policy (e.g. signal strength, transmission rate, etc), a
client looks up its target AP cache and chooses one as the
next target AP. Then, it sets up its interface to the de-
sired channel and PHY type and transmits Authentication
Request to the target AP.

We define two algorithms: comparative mode, and fast
mode. In comparative mode, a client checks all the target
APs in the cache, before selecting the AP to handoff. This
is done by sending Authentication Request to all the target
APs, and comparing the signal strength from the received
Authentication Responses. This is in conformation with the
standard which allows authentication with multiple APs.

In the case of fast mode, if the signal strength of the
received Authentication Response is higher than a certain
threshold, the client immediately moves to the reassociation
phase. If it receives Authentication Response whose signal
strength is lower than the threshold or there is no response
during MinChannelTime, it repeats this operation with the
next target AP in the cache. In case no AP in the cache can
satisfy the client’s handoff policy, the client moves to active
scan and saves the newly found AP in the cache.

2.3 Handoff Latency
In terms of theoretical delay of the procedure, and assum-

ing at least one of the cached APs is available and fulfills the
handoff policy, comparative mode takes M ∗RTT +(N−M)∗
MinChannelTime, where N is the number of target APs in
the cache and M is the number of Authentication Responses
received. In the case of fast mode, in the best case scenario
the first AP from the cache provides signal strength higher
than the threshold, so the delay is 1 ∗ RTT . When the last

 0

 10

 20

 30

 40

 50

 60

5RS5RQ5AS5AQ4AS4AQ3AS3AQ2AS2AQ1AS1AQ

de
la

y
(m

se
c)

handoff steps

average delay

Figure 1: Average handoff delay checking five APs

AP from the cache does so, the delay is the same as that of
comparative mode.

For example, assume that there are five target APs under
open system authentication in the cache and four of them
return Authentication Response. The highest total handoff
latency will be composed of four RTTs for the APs with re-
sponses, one waiting period of MinChannelTime due to the
AP with no response and one RTT for reassociation phase.
Therefore it will be 4 ∗ RTT + 1 ∗ MinChannelTime + 1 ∗
RTT = 4.024 msec, where RTT is 0.6 msec, MinChannel-
Time is 1024 µsec.

3. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

We implement AuthScan in Debian Linux 4.0 Etch with
a 2.6.18-5 kernel. We opt for dividing the system into two
main parts: changes to the kernel driver, and a userland tool
to control the handoff procedure. The driver changes are im-
plemented in the madwifi driver [3], and consists of changing
the protocol state machine, adding system calls to manage
the driver from the application (ioctls) and generation of in-
formational events from the driver to the application. The
userland tool is implemented by modifying wpa supplicant
[4], and involves the creation of its own state machine and
the addition of the cache logic.

We evaluate the performance of our prototype by mea-
suring handoff delay across BSSs of different PHY types
and channels, where six APs are available: AP0(11b, ch.
11), AP1(11a, ch. 42), AP2(11b, ch.14), AP3(11g, ch. 6),
AP4(11g, ch. 1), and AP5(11a, ch. 34). In order to get the
delay from the user’s perspective, we add a checkpoint right
before calling the driver ioctl for requests, and right after
receiving the driver’s informational event for responses.

Figure 1 shows the average delay from ten runs of the
handoff experiments from AP0 to AP5 since the sending of
the Authentication Request to the first AP scanned (1AQ
in the graph). The x-axis shows the steps in the authenti-
cation scanning process. They correspond to the sending of
the Authentication Request (AQ), reception of the Authenti-
cation Response (AS), sending of the Reassociation Request
(RQ) and reception of the Reassociation Response (RS). The
number before each of them is a sequential number related to
authentication scanning steps. The y-axis is the time delay
in milliseconds measured at the checkpoints in the applica-
tion level. The whole handoff delay obtained by checking five
APs is 48.97 msec in average with open authentication. We
believe that we can make further improvements by moving

Figure 2: Demonstration setup

most of the authentication scanning logic from the userland
to the driver.

4. DEMONSTRATION DETAILS
The goal of our demonstration is to show the performance

of our prototype system: a simple client software upgrade
performs fast handoff in the IEEE 802.11 wireless networks.
The demonstration setup is described in Figure 2. Three
PCs are set up as APs with different PHY types and chan-
nel numbers. A client with an IEEE 802.11 a/b/g NIC is
associated to one of the APs, and performs handoff moving
back and forth among the APs. It transmits ICMP Echo
Request frames to the target host in the same subnet. We
set ICMP frame size as 480 bytes, and interval as 10 msec.
At the moment of handoff it scans the other APs in com-
parative mode before reassociating. The delay caused by
handoffs can be observed from the changes of RTTs and the
number of lost packets shown on the client’s display. The
needed space for our demo is a table on which five PCs can
be placed with some space to one another. The required
setup time is about an hour. The needed facility is power
outlets for the PCs.

5. CONCLUSION
We have developed a fast handoff scheme, called Auth-

Scan, that not only achieves fast handoff, but also satis-
fies the fresh handoff metrics and interoperability with al-
ready deployed IEEE 802.11 wireless networks requirements.
AuthScan maintains a target AP list cached from a client’s
previous handoffs, and performs unicast scanning by trans-
mitting not Probe Request frames, but Authentication Re-
quest frames only to the selected APs. AuthScan also pro-
vides a novel usage of open system authentication phase
which has become redundant with the advent of WPA. In
this paper we have shown the theoretical handoff latency,
the effectiveness of our system through experiments, and
the details of our demonstration.

6. REFERENCES
[1] S. Shin, et al.: “Reducing MAC layer handoff latency in

IEEE 802.11 wireless LANs,” MobiWac, USA, 2004.

[2] H. Kim, et al.: “Selective Channel Scanning for Fast
Handoff in Wireless LAN using Neighbor Graph,”
ITC-CSCC, JAPAN, 2004.

[3] “MadWifi - a Linux kernel device driver for Wireless
LAN chipsets from Atheros.” [Online]. Available:
http://madwifi.org/.

[4] “Linux WPA/WPA2/IEEE 802.1X Supplicant.”
[Online]. Available: http://hostap.epitest.fi/.

