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ABSTRACT
Given is a wireless multihop network with n nodes moving according
to the random waypoint model on a system area of size A. Each node
has a fixed transmission range r0. We derive a closed–form approxi-
mation for the critical (r0, n)–pairs that are needed to keep the mobile
network connected during at least P (con) = 99% of the time. In ad-
dition, we calculate the average degree µ experienced by a node during
its movement and the node–to–node distance distribution fS(s).

Category and Subject Descriptors: C.2 [Computer-communication
networks]: Network architecture and design — wireless communica-
tion, network communication, network topology

Keywords: Ad hoc networking, sensor networks, connectivity, mo-
bility modeling, random waypoint model

1. INTRODUCTION
Publications dealing with the analytical investigation of connectivity

in wireless multihop networks usually assume that nodes are distributed
according to a (static) uniform spatial density. This paper studies the
connectivity of mobile nodes with non–uniform spatial density. We re-
gard a network with n nodes moving according to the random waypoint
(RWP) model [1] on a system area A. Each node has the same trans-
mission range r0, and two nodes establish a link if they are located
within distance r0 of each other. We are interested in the analytical so-
lution to the following problem: What is the minimum r0 for given n,
such that the mobile network is connected with high probability, say
P (con) = 99 %? In other words: which (r0, n)–pairs result in a con-
nected network during at least 99 % of the time? On our way to the
solution, we also study uniformly distributed nodes with consideration
of border effects; a previous paper of the author [2] regarded only sce-
narios in which these effects can be ignored. Related work can be found
in [3, 4] and references therein. In addition, we derive equations for the
expected degree µ of RWP nodes and the probability density function
(pdf) of the distance S between them. Both measures are important
topology properties. For instance, the distance between two nodes in-
fluences the number of hops between them, which in turn has impact on
the end–to–end delay of packet delivery.

Our study focuses on a disk with radius a and size A= ‖A‖= a2π.
When appropriate, we use polar coordinates (r =

p
x2 + y2, φ) and

normalized variables r̂0 =r0/a, r̂=r/a, and Ŝ =S/a.

2. RANDOM WAYPOINT MODEL
The RWP model is a frequently used mobility model in ad hoc net-

working research. According to this model, a node randomly chooses
a destination point (‘waypoint’) in A and moves at constant speed in
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a straight line to this point. The node then rests for a certain time pe-
riod (pause time Tp), chooses a new destination and speed, moves with
constant speed to this destination, and so on. The destination points are
chosen from a uniform distribution.

It has been observed in previous papers that the spatial node density
resulting from a long–run RWP movement is non–uniform. The steady–
state pdf of a node’s location X = (X, Y ) is given by fX = qfX,p +
(1 − q)fX,m, where fX,p is the density of all pausing nodes, given by
a uniform pdf over A, and fX,m is the pdf of all mobile nodes. In a
circular area, the latter can be approximated by fX,m = fXY (x, y)≈

1
a2π

(− 2
a2 r2 + 2) for 0 ≤ r ≤ a [5]. The pause probability [6] is

q =
E{Tp}

E{Tp}+E{T} , where E{T} denotes the expected movement time

between two waypoints. It is given by E{T}=0.905 a/v for constant
speed v on a disk.

3. NODE DEGREE AND DISTANCES
Let C0(x) denote the area that a node at location x covers with

its transmission power. The probability that a randomly chosen node
is located within this coverage area is P0(x) =

RR
C0(x)

fXdA =
R y+r0

y−r0

R x+
√

r2
0−(y′−y)2

x−
√

r2
0−(y′−y)2

fXY (x′, y′) dx′dy′. The expected degree of

a node at x is then µ(x) = nP0(x).
For uniformly distributed nodes on a disk, we obtain µp(x) =

n r̂2
0 for 0 ≤ r̂ ≤ 1− r̂0, and µp(x) = n

π
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for 1−r̂0 <r̂≤1. Combining the
pause and mobility components gives µ(x) = q µp(x)+(1−q)µm(x).

From this, we can compute the average degree µ =
RR

A µ(x)fXdA
experienced by an RWP node during its entire movement. Proper in-
tegration and expansion into a Taylor series with respect to r̂0 yields

µ ≈ nr̂2
0

3

�
(4 − 2q + q2) − 4

π
q2 r̂0 − 3(1 − q) r̂2

0

�
for r̂0 ≤ 0.3.

Let us now regard the distance S between two nodes. Its cumulative
distribution is defined by FS(s) = P (S ≤ s) = µ

n
|r0=s. Taking the

derivate of FS(s) and performing normalization yields the pdf fŜ(ŝ)=
ŝ
9π

� �
6q2+(36ŝ2−12)q−36ŝ2+24

�
π +

�−12q2 + (−72ŝ2+24)q +

72ŝ2−48
�
arcsin ŝ

2
+
�
(−̂s5+7ŝ3−15ŝ)q2 +(2ŝ5−23ŝ3−6ŝ)q− ŝ5+

16ŝ3+12ŝ
�√

4−ŝ2
�

with ŝ = s/a. Note that fS(s)= 1
a

fŜ(s/a). The

expected distance is E{Ŝ} = (−5q2+64q+256) 128
14175π

.
Using q =1 or 0 gives us the expressions for uniform nodes or RWP

nodes with no pause time, respectively. We observe that RWP mobility
increases µ and decreases E{Ŝ}.

4. CONNECTIVITY
A network is connected if and only if there is a path between each pair

of nodes. The minimum range that is needed to obtain, with a certain
probability p, a network with no isolated node is therefore a lower bound
for the range that is required to achieve, with the same probability p, a
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Figure 1: Probability that none of n = 500 nodes is isolated

connected network: r0 (P (con)=p,n) ≥ r0 (P (no iso node) = p, n).
We are especially interested in high connection probabilities p=0.99.

In the following, we assume that r̂0 ≤ 0.3 and n > 100, such
that binomial distributions can be well approximated by Poisson dis-
tributions. The probability that a node at x is isolated is P (iso |
x) = P (no node in C0(x)) = exp(−µ(x)). The probability that a
node with unknown location is isolated is thus P (iso) =

RR
A P (iso |

x) fX dA. Such isolation events are ‘almost independent’ from node
to node for small r0. Thus, the probability that none of the n nodes is
isolated is P (no iso node)
exp(−n P (iso)).

Using numerical integration, we compute P (no iso node) for uniform
and RWP nodes on a disk. Fig. 1 gives an example for n = 500. By
variation of r0 and n, we find out the critical (r0, n)–pairs guarantee-
ing P (no iso node)=0.99. They are shown in Fig. 2. For comparison,
the curve for Poisson distributed nodes without border effects — each
node has µ(x) = µ = r2

0π/A, hence r̂0(P (no iso node) = p, n) =q
1
n

(lnn − ln ln 1
p
) — is illustrated.

As discussed above, these curves represent lower bounds for
r0(P (con) = 0.99, n) in the same scenario. The important question is
now: How tight is this bound? To approach this question, let us compare
the simulation results on P (no iso node) and P (con) in Fig. 1. There is
an unignorable difference between P (no iso node) and P (con) at low
probability values, but both curves converge for higher probabilities.
Let us express this behavior as

r0 (P (con)=p, n) = r0 (P (no iso node)=p,n) + ε (1)

with ε → 0 as p→ 1, where ε ≥ 0. A mathematical basis for this phe-
nomenon is given by Penrose’s graph–theoretical theorem [7] about the
‘longest link of the random minimal spanning tree’ (also see [2]). This
theorem can be interpreted as follows: In almost all random uniform
node placements, with n sufficiently large, the minimum range needed
to avoid isolated nodes is equivalent to the minimum range creating a
connected network. We therefore state that r0(P (no iso node) = p, n)
is a very tight bound for r0(P (con) = p, n) for high probabilities p.
As shown by the simulation results in Fig. 2, it is sufficient to compute
the ranges r0(P (no iso node) = 0.99, n) and use them as very good
approximations for r0(P (con)=0.99, n).

The key question arising for calculation of the connectivity with RWP
mobility is whether (1) can also be employed for RWP distributions. To
answer this question, let us thus briefly re–interpret Penrose’s theorem.
We regard a given node placement that was generated by a uniform ran-
dom distribution. Penrose actually says: if we increase r0 of all nodes
simultaneously (starting at r0=0), the final transition from unconnected
to connected will be, with high probability, due to a previously isolated
node that obtains a neighbor — it will not be due to a fusion of two pre-
viously separated partitions; those partitions already connected at lower
r0. This statement was shown to be true for uniformly distributed net-
works with and without border effects [7]. We note that each node has
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the same isolation probability in a uniform network without border ef-
fects. If border effects are present, the isolation probability for nodes
close to the border is higher, and it becomes even more likely that the
transition from unconnected to connected is due to an isolated node.
Using a spatial distribution that shows a monotonically decreasing node
density from the middle toward the border of the area, e.g. an RWP
distribution, intensifies this effect.

This discussion leads to the following statement: The critical (r0, n)–
pairs required to keep the network connected during at least 99 % of
the total running time can be well approximated by the critical pairs re-
quired to avoid isolated nodes during this time. We computed these pairs
for a disk by numerical integration. They are shown in Fig. 2 and can
be used by researchers in this field to set simulation parameters accord-
ingly. In short, RWP mobility significantly decreases the connectivity
of ad hoc networks compared to uniformly distributed nodes, whereas
it increases the expected node degree µ. The shorter E{Tp}, the lower
the connectivity and the higher µ.

Finally, we note that, if the initial spatial distribution of RWP nodes is
uniform, and an (r0, n)–pair is chosen according to Fig. 2, the network
is also connected with P (con)≥99% during the ‘startup phase’ of the
mobility model, i.e., when the steady–state spatial distribution is not
yet achieved.
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