
Poster: Power Efficient Gathering of Correlated Data:
Optimization, NP-Completeness and Heuristics∗
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ABSTRACT
This paper studies the interaction between the communi-
cation costs in a sensor network and the structure of the
data that it measures. We formulate an optimization prob-
lem for power efficient data gathering and show that the
problem is NP-complete. We propose scalable, distributed
and efficient heuristics for solving this problem and show by
numerical simulations that the power consumption can be
significantly improved over direct transmission or the short-
est path tree. Our algorithms provide solutions close to a
computationally heavy heuristic used as benchmark, simu-
lated annealing, which is provably optimal in the limit.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; F.2.2 [Analysis of Algorithms and Problem
Complexity ]: Nonnumerical Algorithms ad Problems

General Terms
Algorithms, Design, Performance

Keywords
Sensor networks, data gathering, NP-completeness

1. CORRELATED DATA GATHERING
Sensor networks measure data which is usually not inde-

pendent at different locations, but rather correlated. In data
gathering, there is one sink node (the base station), and all
other nodes are information sources. All their data need to
arrive at the base station. This problem has been addressed
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in [2], [3], [4], [5]. Our novel approach is to exploit the in-
teraction of source coding and transmission, for improving
power efficiency of correlated data gathering. In our setting,
the data structure (correlation) influences the communica-
tion structure (the tree built for gathering the data).

2. SYSTEM MODEL AND OPTIMIZATION
As battery power is the scarce resource, the total power

used by the network has to be minimized. The power needed
to transmit data from a node essentially consists of the prod-
uct between the aggregated amount of data transmitted by
that node, and the weight of the link to its parent node in
the gathering tree. The weights on the links are functions
of the distances between the nodes.

We consider a simplified model of interaction between
data supply at nodes and transmission structure; however,
our model preserves the original complexity of the problem.
We will show that the combined treatment of both source
coding and transmission makes the problem NP-complete.
The reason is that the data amounts supplied at nodes de-
pend on the transmission structure, due to correlation in the
data. On the contrary, in classical network transport theory,
supplies at nodes are fixed.

Denote by Xi the random variable measured at node i,
and by di,j the link weights. Data at nodes without side in-
formation are coded with H(Xi) = R bits. However, inter-
mediate nodes on gathering paths do have side information
available from their children. We assume that the reduction
in entropy is independent from the distance and the amount
of side information available: H(Xi|Xj , . . . ) = H(Xi|Xj) =
r bits, j �= i, and 0 ≤ r ≤ R. Let ρ = 1 − r/R, 0 ≤ ρ ≤ 1
be the correlation coefficient. When ρ is 1, the data are
strongly correlated; when ρ is 0, the data are independent.

Finding good correlated data gathering trees is not trivial
even for very simple networks (Figure 1). If data were in-
dependent, the shortest path tree (SPT) would be optimal.
However, in Figure 1(a), as soon as ρ > 1/2, the SPT is no
longer optimal. In Figure 1(b), the ratio of total used pow-
ers is limN→∞ pT SP

pSP T
= (1−ρ)

(
1

2D
+ 1

)
. If ρ = 1, a traveling

salesman path (TSP) is arbitrarily more power efficient than
direct transmission (SPT).

In general, the optimization problem is to find the span-
ning tree ST that minimizes:

ρ
∑

l∈L

dST (l, S) + (1 − ρ)
∑

i∈V

dST (i, S), (1)

where V is the set of nodes in the network, L ⊂ V is the set
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Figure 1: Simple network examples.
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Figure 2: (a) A graph instance; (b) Gadget for Ci.

of leaves of ST , and dST (i, S) is the total weight of the path
connecting i to S on the ST tree.

If ρ = 0, the optimal tree is SPT (polynomial time). If ρ =
1, the optimal solution is the multiple TSP (NP-complete).
In section 3 we show that the problem is NP-complete in
the general case 0 < ρ ≤ 1 as well. We present in section 4
heuristics that provide good gathering trees.

3. NP-COMPLETENESS

Definition 1. MINIMUM POWER GATHERING TREE
INSTANCE: A undirected weighted graph G = (V, E), a

node S ∈ V , a positive integer M .
QUESTION: Does the graph admit a spanning tree ST

of cost, as defined in (1), at most M?

Theorem 1. There is no polynomial time algorithm that
solves the MINIMUM POWER GATHERING TREE prob-
lem, unless P=NP.

Proof. Our proof is based on a reduction from the MIN-
IMUM COVER problem [1]. An instance of the MINIMUM
COVER problem is a collection C of subsets of a finite set
P , and a positive integer K ≤ |C|. For each such instance,
we consider a three layers graph instance of our problem
(Figure 2(a)). For each Ci ∈ C we build a structure as in
Figure 2(b). Let M = |P |(d + a + 1)R + K(2aR + 3R + a +
2) + (|C| − K)(aR + 3R + 2a + 4). Finding a spanning tree
with cost at most M is equivalent to finding a set cover for
the set P , of cardinality at most K. The construction of the
graph instance is polynomial, so our problem is at least as
hard as MINIMUM COVER, and thus NP-complete.

4. ALGORITHMS AND SIMULATIONS
Leaves deletion heuristic
We start with SPT as initial guess. Nodes maintain only

local information: parent, number of children, dST (i, S).
Then, as long as power improvements are obtained, every
leaf node i finds in its neighborhood the leaf node j that
maximizes R(dST (i, S) + dST (j, S))− (R(di,j + dST (j, S)) +
rdST (j, S)) − I(i). If this quantity is positive, par(i) → j,
and all necessary updates are done for i, former par(i), and
j. This algorithm involves only 3 − 4 supplementary steps
after SPT is computed, and is fully distributed.
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(b) Power gain vs. ρ.

Figure 3: Average power improvement (in %) of
leaves deletion (LD) over shortest path tree (SPT)
for (a) ρ = 0.9, and (b) N = 200.
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(b) Leaves deletion heuris-
tic
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Figure 4: Data gathering tree on a random network
instance. N = 200, ρ = 0.2.

Balanced SPT / multiple TSP tree
This heuristic is a combination of the SPT and multiple

TSP. We first build the SPT for nodes within a radius q(ρ)
away from the base station (Figure 4(c)). Then, successively
add to the tree node i that minimizes d(i, l) + dST (l, S),
where l ∈ L are leaves of the current subtree. This is a
simple suboptimal nearest neighbor approximation of the
multiple TSP.

Our simulations were done in MATLAB for a network
of up to N = 500 nodes randomly distributed on a square
grid. The SPT was found with the distributed Bellman-
Ford algorithm, that runs in O(N |E|) steps. Our extensive
experiments show important improvements (up to 40 %) of
the leaves deletion and the balanced SPT/TSP heuristics
over SPT, for randomly distributed nodes (Figure 3, 4).
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