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ABSTRACT

We consider the problem of determining rates of growth for the
maximum stable throughput achievable in dense wireless networks.
We formulate this problem as one of finding maximum flows on
random unit-disk graphs. Equipped with the max-flow/min-cut the-
orem as our basic analysis tool, we obtain rates of growth under
three models of communication: (a) omnidirectional transmissions;
(b) “simple” directional transmissions, in which sending nodes gen-
erate a single beam aimed at a particular receiver; and (c) “com-
plex” directional transmissions, in which sending nodes generate
multiple beams aimed at multiple receivers. Our main finding is
that an increase of @(log”(n)) in maximum stable throughput is
all that can be achieved by allowing arbitrarily complex signal pro-
cessing (in the form of generation of directed beams) at the trans-
mitters and receivers. We conclude therefore that neither direc-
tional antennas, nor the ability to communicate simultaneously with
multiple nodes, can be expected in practice to effectively circum-
vent the constriction on capacity in dense networks that results from
the geometric layout of nodes in space.
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1. INTRODUCTION
1.1 Problem Setup

Consider the following network communication problem. n nodes
s; are placed on the closed set [0, 1] x [0, 1], at uniformly distributed
random locations (z;, y;). Each s; observes and encodes a source
of information, and this encoding is to be relayed over the network
to a randomly chosen receiver r; (equal to some other s). Each s;
can only send messages to and receive messages from nodes within
some distance d,,, for a suitable choice of the common transmis-
sion range d,, to be determined later. Links have a fixed finite ca-
pacity L, independent of network size. This scenario is illustrated
in Fig. 1.

Problem setup.
send send data to mn randomly chosen receivers, all nodes act as
sources/destinations/relays, and nodes can only exchange messages
with nearby nodes (within a given transmission range d,). Optimal
routing is assumed. The goal is to find out how much data this network
can carry reliably.

Figure 1. n randomly located transmitters

Our goal in this paper is to determine the rate of growth for the
maximum stable throughput (MST) of the network [1, 21]—the to-
tal number of packets that all sources can inject into the network,
while keeping the size of the largest queue bounded—for a variety
of transmitter/receiver models based on directional antennas.

1.2 On Directional Antennas and MST Issues

Why the interest in directional antennas? Because there is a ques-
tion about wireless networks equipped with such antennas which
we believe is very important, and for which we could not find a
satisfactory answer in the literature:

e A key result in the analysis of performance of wireless net-
works states that when n non-mobile nodes are randomly
placed in a disk of unit area, traffic patterns are optimally
assigned, and the range of each transmission is optimally
chosen, the total throughput that the network can carry is

(C] («/n/ log n) [12].} The per-node throughput then is only
Ln this paper we will use the notation of Graham/Knuth/Patashnik




(S} (1/,/nlog(n)), i.e., vanishes as the number of nodes in

the network increases. The work of [12] sparked significant
interest in this problem (see, e.g., [9, 17, 18, 20, 25].

e In a different segment of the research community, the use
of directional antennas has also received a fair amount of
attention in recent times. The rationale is that with omnidi-
rectional antennas, existing MAC protocols require all nodes
in the vicinity of a transmission to remain silent. With di-
rectional antennas however, it should be possible to achieve
higher overall throughput, by means of a higher degree of
spatial reuse of the shared medium, and a smaller number
of hops visited by a packet on its way to destination (see,
e.g., the recent work of [3]). Furthermore, in the context of
energy-efficient broadcast/multicast, it has been argued that
the ability of a transmitter to reach multiple receivers is an
important source of gains to take advantage of in the devel-
opment of suitable protocols, such as BIP [24].

If we take a step back, careful reading of all these previous results
raises an important question: how much exactly is there to gain
from the use of directional antennas? Could directional antennas
(in which the width of the beams tends to zero as n gets large) be
used to effectively overcome the vanishing maximum throughput
(©(1/4/mlog(n))) of [12]? Although we have not been able to
find answers to this question in the literature (and that motivated us
to start working on this problem in the first place), we have found
a couple of related results based on which we can say a-priori that
the answer is probably no:

e In [12], the authors claim that their result holds irrespec-
tive of whether transmissions are omnidirectional or directed,
provided that in the case of directed antennas there is some
lower bound (independent of network size) on how narrow
the beams can be made.

e In [14, 19], for some regular networks, it is shown that en-
abling nodes with Multi-Packet Reception (MPR) capabili-
ties [7] can only increase the total throughput of the network
by a constant factor (= 1.6), independent of network size.

Given this state of affairs, it seems to us that deciding exactly how
much there is to be gained by using directional antennas, and giving
some measure of how complex the transmitters/receivers need to be
made to achieve those gains, is indeed a topic worth being studied.
In this paper, we address both issues.

1.3 Flows on Random Graphs

The main idea behind our approach to this problem is simple: the
transport capacity problem posed in [12] is essentially a throughput
stability problem—the goal is to determine how much data can be
injected by each node into the network while keeping the system
stable—, and this throughput stability problem admits a very sim-
ple formulation in term of flow networks. Network flow techniques
have been proposed to study capacity problems in communication
networks before (see, e.g., [2], [5, Ch. 14.10]), and the work carried
out in this paper builds on ideas we started developing in [17].

MST is Maximum Multicommodity Flow
The problem of finding the maximum stable throughput of our net-
work is an instance of a multicommodity flow problem [4, Ch. 29]:

e There are n commodities: the packets for the transmission
from transmitter s; to receiver r;.

for the rate of growth of functions [8, Ch. 9].
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e The sum of the packets transmitted by all sources cannot ex-
ceed the capacity of a link.

e Subject to these constraints, we want to find the largest num-

ber of packets that can be injected simultaneously by all sources.

If we represent our network by a graph G = (V, E),? the capacity
of an edge by c(u, v), and let our optimization variables be f;(u, v)
(the flow along edge (u, v) for the 3-th commodity), then the max-
imum multicommaodity flow problem above can be formulated as a
linear program, as shown in Table 1.

max /)
subject to:

d= E(Si,v)eE fi(Si,’U), 1<i1<n

E?:l fi(ua ’U) < c(“: U)ﬂ (uﬂ U) €EE
fi(u,v) = —fi(v,u), (u,v) € E;1<i<n
Zuevfi(uiv)z()’ UEV—{Si,’I‘i},ISiSn

Table 1: Linear programming formulation of the multicommodity
flow problem. Note that the flow conservation property is essentially
a throughput stability property, in that it ensures that there is no build-
up of packets at intermediate nodes (i.e., queues are stable).

A reader familiar with network flows may wonder at this point
whether we really need a multicommodity formulation in our prob-
lem, or we could get away with considering simpler single com-
modity flows. We would like to point out that indeed, our problem
is essentially a multicommodity problem. The key to see why this
is the case is that, in the single commodity problem with multiple
sources and sinks, units of flow travel from any source to any sink,
but in our problem, the flow generated by one source has to reach
one and only one specific sink. Another observation that the same
reader could make is that, in general, maximum multicommodity
flow is an NP-hard problem [4, Ch. 29]. But in our setup, the fair-
ness constraint among sources that requires that they all inject the
same amount of flow (the first constraint in Table 1) does render the
problem computationally tractable.

A Restriction in the Optimization Domain

Not much is known about the structure of optimal solutions to the
maximum multicommodity flow problem—the only technique we
are aware of for deciding whether a particular amount of flow of
each commodity can be supported by the network consists of for-
mulating this problem as a linear program, and then answering the
non-emptyness question for its polytope of optimization, using a
polynomial time algorithm (e.g., the Ellipsoid method [10]). There-
fore, we will not be able to use that formulation to do much about
the problem of interest to us. However, there is one special case of
our problem which is interesting in its own right, and is described
in Fig. 2.

Note that doing this amounts to introducing a restriction in the
domain of optimization of the linear program from Table 1: instead
of considering all possible network realizations, we only consider
those which satisfy the constraints of Fig. 2. The new linear pro-
gram is shown in Table 2.

Before continuing, we would like to argue that although net-
works as in Fig. 2 are certainly a restriction of the general case,
this restriction is a very interesting one to consider:

2The definition of this graph is not trivial, and will be addressed
in later sections for different tx/rx architectures. For now, we rely
on an intuitive notion of how a network could be represented by a
graph. This issue will be dealt with extensively later on.



Figure 2: A special case, in which instead of having n nodes that si-
multaneously play the role of a source/relay/sink, we have ©(n) (with
probability that tends to 1 as n — o0) nodes on the left half of the
network play the role of source/relay only (no sinks), and ©(n) (with
probability that tends to 1 as n — o) nodes on the right half of the
network that play the role of relay/sink only (no sources).

max EuEV f(S, u)

subject to:
flu,v) <c(u,v),  (w,v) €E
f(u,v) =—f(v,u), (U)U) €EE
Zvevf(u,v)=0, UEV_{S7t}

Table 2: Linear programming formulation of the single commodity
flow problem. In this case s is the single (super)source, and t is the
single (super)sink.

1. It still captures the key aspect of wireless networks that lead
to their constriction of capacity: the need for nodes to share
the channel with other neighboring nodes. Packets going
from the left to the right must contend for spatially con-
strained network resources to cross the center cut.

2. We will see later how this formulation can be thoroughly an-
alyzed based on standard (not multicommodity) flow meth-
ods. This is important because there is a significant amount
of analytical machinery available to us to study regular flow
problems, that we can bring to bear in this context.

3. Based on this analysis, we find that at least in one network
architecture which had been analyzed already (omnidirec-
tional transmissions, [12]), the scaling laws we obtain using
our proof techniques coincide with previously known scaling
laws. This means that, at least in this case, the optimization
problems defining both the multicommodity and the regular
flow problems admit the same solution, and hence there is no
loss of optimality due to considering this restriction.

Because of these reasons, in the rest of this paper we will be fo-
cusing only on this special case. The most important point still left
open as of the writing of this paper is actually proving or disproving
the equivalence between the two linear programs above.

1.4 Outline of the Proof Techniques

Counting Edges Across a Minimum Cut

Our main task in this paper consists of determining the rate of
growth (as a function of network size n) for the solution of the
linear program in Table 2. To do so, we make use of a standard
result in flow networks: the max-flow/min-cut theorem of Ford and
Fulkerson [6]. We solve this problem essentially by counting how
many edges, depending on different tx/rx architectures, can be con-
structed so that they all simultaneously straddle a minimum cut.

A natural question that arises at this point is: what are good cuts
that will give us useful estimates for the values of the linear pro-
gram? And here is where we see once more why the restriction
we introduced to turn this problem from a multicommodity flow
problem into one involving regular flows only makes sense: there
is a “self-evident” cut one should consider under this restriction,
the division between the region of transmitters and the region of
receivers. Formally, this cut is defined as

S = (mi,yi) € Vﬂ[(],

3) x [0,1],
T = (zi,y:) €VNIi,1

,1] x [0, 1].

1
2

The choice of cut for analysis is shown in Fig. 3.

Figure 3: To illustrate the choice of a cut to derive bounds. L and R
are sections of the network on each side of the cut boundary, of width
dp,, the transmission range.

In the process of determining these counts, we will proceed in
two steps. First, we will compute the expected number of edges
that straddle this cut, with this expectation taken as an ensemble
average over all possible network realizations. And then we will
prove uniform sharp concentration results: given an arbitrary net-
work realization, with probability 1 as n — oo, we will show that
in this network the actual number of edges that straddle the cut has
the exact same rate of growth (in the © sense of [8]) as the ensem-
ble mean does.

A Few Tools Used Frequently in this Paper

There are two results we will be using repeatedly throughout our
calculations of average number of edges that cross the cut, and so
we state them here once:

e What is the smallest possible value of d, that, under the
given statistics for placement of nodes, guarantees that the
resulting graph will be connected? This question was an-
swered in [11]. With probability 1 as n — oo, the graph is
connected if and only if d,, is such that

_logn+é&n
==

wdi €))

for some &, — oo.

e What is the average number of nodes in a subset A C [0, 1] x
[0, 1]? A straightforward calculation shows that

E(Number of nodesin A)
=nP@) =n [ fev(ep)isdy =nldl, @)
where | A| denotes the area of A.
Also, to prove sharp concentration results, there is one form of

the well known Chernoff bounds we will be using repeatedly, and
S0 we state it once here, in general:



e Suppose X ... X, areiid and uniformly distributed n points
on the [0, 1] x [0, 1] plane. Consider we have a number of
subsets A; C [0,1] x [0, 1], for j = 1... f(n) (the number of
subsets may depend on the number of points n), and denote
the area of any such subset by |A;|. Now we define some
random variables:

NijZ{

Since the X;’s are independent, the IV;;’s are also indepen-
dent.

1, X;€A;
0, otherwise.

e Now let IV; be another random variable defining the number
of points in A;, i.e., N; = Y ©, N;;. We see in this case
that the V;’s, 7 = 1... f(n) are random variables where
each is the sum of n iid binary random variables (but not
necessarily independent among the IV;’s themselves).

e The expected number of points in A4; is

E(N;)=E (2”: Nij> = ZH:E(NU).

But, since P(X; € Aj) = |A;|, we have that E(N;;) =
1|A4;| 4+ 0(1 — |A;]) = |4;], and hence E(N;) = n|A;|.

For the family of variables IV;, we have the following standard
results, known as the Chernoff bounds (see, e.g., [15, Ch. 4]):

1. Forany é > 0:

5 nlAj|
P[N; > (14 8)n|4;]] < (ufW) .

2. Forany0 < 4§ < 1:
PIN; < (1 - 8)n|A;|] < e 34317
Combining the two inequalities we can write forany 0 < § < 1:
P[IN; = n|4;j|| > dn|4;]] < e "4, @)

where —0 = 6 — (1 + 6) In(1 + 4) in the case of the first bound,
and —f = — 347 in the case of the second bound. Therefore, § >
0 always, and hence as n — oo, there exist constants such that
deviations from the mean by more than these constants occur with
probability 0.

1.5 Main Contributions

Summary of Results

In this paper we apply the proof techniques outlined in 1.4 in the
analysis of three different transmitter/receiver architectures: omni-
directional antennas, directional antennas capable of generating a
single beam, and directional antennas capable of generating multi-
ple beams simultaneously.

We consider first the case of omnidirectional antennas. Since we
have not yet attempted to prove the equivalence of the two linear
programs in Tables 1 and 2, it appears necessary to at least pro-
vide some kind of evidence that the proof techniques we develop
in this work do indeed yield meaningful results. And we do this by
showing that, in the case of omnidirectional transmissions, the scal-
ing laws obtained based on our proof method are identical to those
of [12]. We are currently investigating the issue of equivalence of
these two linear programs.

Then we apply the same proof techniques to the determination
of scaling laws for a new architecture, in which transmitter nodes
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can generate a single and arbitrarily narrow directed beam, and in
which receivers can successfully decode multiple transmissions as
long as the transmitters are not co-linear. And in this case we find
that:

e |f only enough power to maintain the network connected is
radiated at each node, the maximum stable throughput of this

network is ©(v/nlog n).

o If now enough power is radiated to achieve a maximum sta-
ble throughput linear in network size (certainly feasible with
arbitrarily narrow directed beams), then the number of re-
solvable beams that each node must generate is ©(n).

Finally, we consider a node architecture in which each node is
able to generate multiple and arbitrarily narrow directed beams,
simultaneously to all nodes within its transmission range, and re-
ceivers operate as above. In this case we find that:

e |f only enough power to maintain the network connected is
radiated at each node, the maximum stable throughput of this

network is @(\/ﬁlog% n).

e If now enough power is radiated to achieve a maximum sta-
ble throughput linear in network size (certainly feasible with
arbitrarily narrow directed beams), then the number of re-

solvable beams that each node must generate is @(n%).

Relevance of the Results

Essentially, our results show that both directional antennas, as well
as the ability to communicate simultaneously with multiple nodes,
can only achieve modest improvements in terms of achievable MST.
While some performance gains are certainly feasible at reasonable
complexities (in the order of a low-degree polynomial in log n), the
number of resolvable beams that need to be generated to actually
increase the achievable MST by more than a polylog factor is poly-
nomial in network size, and exponential in the minimum number
of beams that would be required to satisfy the basic requirement of
keeping the network connected. How many beams need to be re-
solved is a reasonable measure of complexity, since the higher this
number, the narrower these beams need to be made, and hence the
higher the complexity of a practical implementation.

On a more conceptual note, we believe that the proof techniques
developed in this paper form an interesting contribution in their
own right as well. Our results are obtained using only elementary
network flow concepts [4], and the calculations involved require
only basic probability theory, basic calculus and basic combina-
torics. By interpreting the formulation of Gupta and Kumar for
random networks presented in [12] as an elementary problem of
flows in random graphs, we were able to obtain what we believe
is a number of interesting insights into the nature of this problem
which were not obvious to us from their proof technique, as well
as a set of meaningful generalizations—directional antennas is one
presented here, but we have other generalizations currently under
investigation as well.

Organization of the Paper

The rest of this paper is organized as follows. In Section 2 we ob-
tain scaling laws for the case of omnidirectional antennas, in Sec-
tion 3 we do the same for transmitters generating a single directed
beam, and in Section 4 we do the same for transmitters capable of
generating multiple beams simultaneously. We present concluding
remarks in Section 5. We also include an appendix with relevant
background material, to keep the paper self-contained.



2. OMNIDIRECTIONAL ANTENNAS

Before we start considering more general node architectures, we
show in this section how, for the case of nodes equipped with omni-
directional antennas, using our proof techniques we obtain scaling
laws identical to those reported in [12]. This shows that, at least in
this case, the value of the two linear programs is identical (to within
a constant factor), and therefore that the restriction in the optimiza-
tion domain does not result in any performance degradation.

2.1 Transmitter/Receiver Model

In [12], transmissions were omnidirectional, and described based
on a pure collision model: for a transmission to be successfully
decoded, no other transmission has to be in progress within the
range of the receiver under consideration. This setup is illustrated
in Fig. 4.

@)
@) @)
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Figure 4: A transmission model based on omnidirectional antennas
and pure collisions.

2.2 Average Number of Edges Across the Cut

Our first task is to determine the average number of edges that can
be simultaneously supported across the cut, average taken over all
possible network realizations.

An Upper Bound

For a fixed receiver location (z,y) in R, there can only be one ac-
tive transmitter within distance d., of the receiver, for that transmis-
sion to be successfully received. Since to obtain an upper bound we
only need worry about edges that cross the cut, we first consider all
possible locations of one such transmitter in L, by drawing a circle
of radius d,, and center (x, ). This region is illustrated in Fig. 5.

Figure 5: For a receiver at location (z,y), at most one transmitter
in the shaded region T3, can send a message (if this message is to be
successfully decoded on the other side of the cut).

Denoting by |T%,| the area of the shaded region T7, in Fig. 5,
we use eqgn. (2) to estimate the number of transmitters located in
Ty as n|Twy|. However, since only one transmitter located within
Ty can transmit successfully to a receiver at (z,y), the number
of nodes that are able to transmit at the same time from L to R is
upper bounded by

E(Number of nodes in L)

E(Number of nodes inTy,)

nL
nTpy
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This is an upper bound, because we are assuming that it is possi-
ble to find a set of locations (z,y) in R such that no area in L is
wasted—showing that this bound is indeed tight requires proof.

Now, the area of L is d,,. To compute the area of T7,, we have
to determine the area of an arc of a circle with angle 43, as shown in
Fig. 5, and in a computation entirely analogous to that of the cal-
culation of |@Q5| in Section 4. In this case, we have that sin (% (7 —
9)) = mdf = cos(39), and since 1 < z < 1 +d, itis clear
that we must have 0 < ¥ < 7 and also sin®¥ > 0. Then, we get
|Tey| = 39d;, — L1d, cos(19)2d,, sin(19) = 19d;, — 1d;, sin 9,
and therefore, [T,y | = 1d2 (9 — sin®9). Hence, for each possible
value of ¥, an upper bound on the number of nodes that are able to
transmit at the same time from L to R is

nL ndy, 2

Ty T 4. (9 —sind)

" nid2(9—sinY)

Since this upper bound depends on the choice of receiver location
(through the angle 1), we will make this bound as small as possible
by an appropriate choice of ¥. As noted above, 0 < ¥ < 7, and
sind > 0. Hence, the number of transmitters in L is smallest when
¥ = mand sind = 0, i.e., when the receivers are located close
to the cut boundary (as it should be, since it is in this case when
receivers “consume” the maximum amount of transmitter area). In
this case, we get

. 2 2
0<9Sn [dn(ﬂ — sinﬁ)] ~ wdn
as an upper bound on the number of edges across the cut. Further-
more, in this case we see immediately that to maximize capacity
we must keep d,, as small as possible—and we know from eqn. (1)

that the smallest possible d,, that will still maintain the network
connected is ©(+/logn/n). Therefore, replacing for the optimal

dr,, we finally get an upper bound of © (, /n/ log n) .

The Upper Bound is Asymptotically Tight

To verify that the upper bound is tight, we give an explicit flow
construction. Consider the placement of disks shown in Fig. 6.

Figure 6: An explicit flow construction.

Since the height of the square is 1, and we are placing nodes
at distance 2d,, from each other, this guarantees that if there are
nodes in each of the circles to create valid tx/rx pairs, then the
number of successful sj

multaneous transmissions across the cut is
5 = © (\/n/ log "5 Whether all such pairs of nodes can be

created simultaneously or not is the issue addressed next.

2.3 Uniform Convergence Issues

Next we prove that when n points are dropped uniformly over the
square [0, 1] x [0, 1], we have that simultaneously (i.e., uniformly)
over all 57— circles from Fig. 6, each one of the circles contains
O(log(n)) points in almost all network realizations. From this, we

conclude that the distribution of the number of edges across the cut




is sharply concentrated around its mean, and hence that in a ran-
domly chosen network, with probability approaching 1 as n — oo,

the actual number of straddling edges is indeed © (\/n/ log(n)).

Statement of the Result

Consider we have L circles centered along the z = l cut as
shown in Fig. 6, W|th centers yi = =(2j—1)dn, j = 1

and radius d,—and let the A;’s leading up to eqgn. (3) be these
circles, and the IV;’s be the counts of points contained in these
circles. Then, we have the following uniform convergence result:

PROPOSITION 1. Define B; := [|[N; — wlogn| < dmlogn].
Then, as n — oo, and for any é € (z, 1) (x =~ 0.6), we have that

Viegn
(N Bi|=1
j=1

lim P

n—o0

Essentially what this proposition says is that with very high proba-
bility and uniformly over j, all A;’s contain ©(logn) nodes.

Proof

Note that |A4;| = wd2 = 7r—g— Then, invoking eqn. (3), we have
that forany 0 < § < 1 we can find a @ > 0 such that

797r. (4)

Thus, we can conclude that the probability that the values of the
random variable IN; deviate by a constant factor from the mean
tends to zero as n — oo. This is a key step in showing that all the
events B; := [|N; —mlog(n)| < dmlog(n)] occur simultaneously,
i.e., that we have uniform convergence of the IV; ’s to their expected
values. Now, from the union bound, we have that

P[|N; — wlogn| > érlogn] < e 718" =p

Zdn

ﬂB

2d" 2dn

UBC >1—ZP[BC

=1—P

But, from eqn. (4), P[B;] < n~%7 and therefore,
1 1
2dn 2dn 0 n 0" néfrrﬂ
PB{1<Y n = =
; J JZ:; 2d,, 2y/Togn

Putting everything together, and letting n — oo, we have

Qd" n§—7r9
B;| > 1- — 1
ﬂ - 2v/logn ’

if and only if 76 > % And this is true for § =~ 0.6 and above (this
follows from the definition of 8 and a simple numerical evaluation).

2.4 Remarks

We would like to conclude this section on omnidirectional antennas
with a couple of remarks on the results presented so far.

One deals with the simplicity of our arguments: in this section we
first computed the average number of edges that cross a cut, then we
showed that in any network realization the actual number of nodes
is very close to the ensemble mean. In previous work [12], similar
results had been obtained based essentially on generalizations of
the Glivenko-Cantelli lemma (that adds uniformity to convergence
in the law of large numbers), due to Vapnik and Chervonenkis [16,
Ch. 2], [22]. Our proof only makes use of simple and much better
known results, such as Chernoff bounds.
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Another remark is about the fact that indeed, the restriction in
the optimization domain introduced to turn the multicommodity
flow problem into a regular flow problem is not trivial. We have
shown that, on this restricted class of networks (senders on the left,
receivers on the right), with omnidirectional antennas the MST we
obtain coincides with that of [12]. This suggests that, at least in
this case, our restricted model captures well essential aspects of this
problem. Of course, to be able to claim an alternative derivation of
the results in [12], we need to establish the equivalence of the two
linear programs. This is an issue currently under investigation.

3. ASINGLE DIRECTED BEAM

3.1 Transmitter/Receiver Model

In this section we consider the first model based on directional an-
tennas: transmitters can generate a beam of arbitrarily narrow width
aimed at any particular receiver, and receivers can accept any num-
ber of incoming messages, provided the transmitters are not in the
same straight line. This results in a significant increase in the com-
plexity of the signal processing algorithms required at each node,
and in this section our goal is to determine if and how much it is
possible to increase the achievable MST, compared to the omnidi-
rectional case. This model is illustrated in Fig. 7.

Figure7: A single beam model for communication between nodes.

3.2 Average Number of Edges Across the Cut

Since at most one edge per transmitter can be active at any point in
time, the average number of edges going across the cut can be no
larger than nd,,, the average number of transmitters on its left side.
Since L and R have the same area, the average number of nodes
on each side of the cut is the same (and equal to ndy,), and hence
the maximum of nd,, transmissions can actually be received, by
“pairing up” every node from one side of the cut with every node
on the other side. The pairing of nodes on each side of the cut is
illustrated in Fig. 8.

Figure 8: Pairing up one transmitter in L with one receiver in R: at
most n|L| = n|R| = ndx such pairs can be formed.

Finally we note that, under the assumption of arbitrarily narrow
and perfectly aligned beams, the only way in which we could have
multiple receivers blocked out by a single transmission is by hav-
ing them all lying in a nearly straight line (i.e., a set of vanishing



measure) under the beam of a single transmitter. But then, to have
an actual edge count lower than ©(nd, ), we would require an in-
creasingly large number of nodes falling in a decreasingly small
area: under our statistical model for node placement, this event
occurs with vanishing probability, and therefore the average edge
count is ©(ndy).

3.3 Sharp Concentration Results

Number of Transmitters in L and Receiversin R

Again, consider n points X;...X,, uniformly distributed over the
[0,1] x [0, 1] plane, and consider the area L on the left side of the
cut, as shown in Fig. 8. We define variables

_[1, X;eL
Ni = { 0, otherwise.

and N = )" | N;. The probability pof X; € Lisp = |L| =
1-d,. Hence, E(N;) =1-p+0-(1—p) =p = dn, and
E(N) =", E(N;) = nd,. From eqn. (3), we know that

P (|N —ndy| > énd,,) < e~

Since 8 > 0, we have that as n — oo, deviations of N from
its mean by a constant fraction (independent of =) occur with low
probability, provided d,, does not decay too fast. Therefore, we
conclude that in almost all realizations of the network, the number
of transmitters in L and the number of receivers in R is ©(ndy).

Number of Edges Across the Cut

Knowing that we have ©(nd,) transmitters and receivers within
range of each other on each side of the cut is not enough to claim
that the number of edges that cross the cut is ©(ndy,). This is be-
cause, in our model for directional antennas, a receiver can success-
fully decode two simultaneous incoming transmissions provided
the angle formed by the receiver and the two transmitters is strictly
positive: if all three are on the same straight line, collisions still
occur, and those edges are destroyed. Therefore, we still need to
show that the actual number of edges is ©(nd, ). And to do this,
we need to say something about the location of points that end up
in L, and not just count how many. To proceed, we cut the area of
L into nd,, rectangles of height ﬁ and width d,,, as illustrated
in Fig. 9. Our goal then becomes to show that in “most” of these
rectangles (meaning, in all but a constant fraction of them) we will
have nodes capable of forming straddling edges.

Figure 9: Cutting L and R into rectangles of size dp, x ﬁ.
Counting how many of the nd,, rectangles in Fig. 9 contain at
least one of the ©(nd») nodes that are dropped in L is an instance
of a classical occupancy problem, in which & balls are thrown uni-
formly onto m bins, in the case where & = m = nd, [15, Ch.
4]. Since % is the probability that a ball falls in any particular bin,
the probability p of an empty bin after throwing all m balls is p =
(1 — £)™ which, for m large, becomes approximately . There-

fore, the average number of empty bins is mp = %w/nlog(n).

82

And by eqgn. (3) again, we have that
P(Y —ndy/e > dndn/e) < e min/e,

where Y is the number of empty bins. So, the probability that
the number of empty bins is a constant factor away from its mean
is small (again, provided d,, does not decay too fast), and hence,
for n large, almost all network realizations will have ©(nd,) non-
empty rectangles. But since transmitter/receiver pairs in different
rectangles are not collinear, the number of edges across the cut is
O(nd,), ged.

3.4 Remarks

MST in a Minimally Connected Network

In this section, we found that the MST achievable by the type of
tx/rx pairs considered here depends on the connectivity radius d.,.

If we replace d,, with %\/liiﬂ (the minimum radius of eqgn. (1),
from [11]), we get

ndn, zn%ﬂ loin =0 <\/7Tgn) .

Comparing this expression with its equivalent from Section 2, we
see that all we gain over the case of omnidirectional antennas is an
increase in MST by a factor of ©(log n).

Minimum Connectivity Radius Resuting in MST = ©(n)

In this tx/rx architecture we are considering the use of arbitrarily
narrow and perfectly aligned directed beams. Therefore, it does
make sense to consider the use of a possibly larger transmission
range than the minimum required to keep the network connected,
since in this case a large range does not force other tx/rx pairs to
remain silent while a given transmission is in progress. And since
by increasing the transmission range now we can increase through-
put, our next goal is to determine the minimum range that would be
required to achieve MST = O(n).

Solving for d, in ©(n) = O(nd,), we see that trivially, d, =
O(1). That is, to achieve MST linear in the number of nodes using
a single beam in each transmission, the radius of each transmission
has to be a constant independent of n.

Minimum Number of Simultaneous Beams

From a practical point of view, does it matter that to achieve linear
MST we need to keep the transmission radius constant? In this
section we argue that yes it does, very much. To see why this is
s0, next we count the minimum number ~ of narrow beams that a
transmitter would have to generate simultaneously, if MST linear
in the size of the network is to be achieved: this number gives a
measure of the complexity of the beamforming transmitter, since
27/~ is an upper bound on the maximum angle of dispersion of
the beam.

Since a node can generate a beam to any receiver within its trans-
mission range (see Fig. 7), again using egns. (2) and (3), we have
that for n large, the number of points within a circle of radius d,
is ©(n - wd2). In the case of d,, only satisfying the requirement of
keeping the network connected,

y=n-nds =n (_wl(;gn) = O(log n).

This fact was known already—see [26] for a more complete anal-
ysis (constants hidden by the ©-notation included), including also
a number of interesting references on the history of this problem.



But if now we consider a larger d,, satisfying the requirement of
achieving linear MST, then

y=mn-0(1)% = 0(n).

Therefore, we see « has an exponential increase relative to the num-
ber required to maintain minimum connectivity—it is on this fact
that we base our claim about directional antennas not being able to
provide an effective means of overcoming the issue with per-node
vanishing throughputs.

4. MULTIPLE DIRECTED BEAMS

4.1 Transmitter/Receiver Model

In this section we consider another model based on directional an-
tennas: transmitters can generate an arbitrary number of beams, of
arbitrarily narrow width, aimed at any particular receiver; and re-
ceivers can accept any number of incoming messages, provided the
transmitters are not in the same straight line. This is perhaps the
most complex scheme that could be envisioned based on directed
beams. Our goal is to determine if and how much it is possible to
increase the achievable MST, compared to the previous two cases.
This model is illustrated in Fig. 10.
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Figure 10: A non-degraded broadcast channel model for communica-
tion between nodes: each node is able to send simultaneously a different
packet to each one of the nodes within his transmission range. Further-
more, multiple broadcasts (from different transmitters) do not collide,
unless the transmitters are perfectly aligned.

4.2  Average Number of Edges Across the Cut

Fix a particular transmitter on the left side of the cut. The num-
ber of edges that cross the cut for that one transmitter is exactly
the number of nodes in the right side of the cut that can receive
this transmission. Therefore, for an arbitrary point p = (z,y) in
L =} —dn, %) x[0,1], we draw a circle of radius d,, and center
(z,y). The points ¢ = (u,v) in R = [3, 3 +d,] x [0,1] that are
inside the circle are equal to the number of edges we want to count.
These points p and ¢ for which an edge exists satisfy the following
conditions: (1) 3 —dn <z < 1; (2) either (a) 0 < y < 1, or (b)
dn <y<1—dn;(3) 1 <u;and (4) (u—2)*>+ (v —y)* < d,.
The situation is illustrated in Fig. 11.

Number of Receivers per Transmitter
For each p = (z,y), we get the average number of points ¢ =
(u, v) within the shaded arc @Q,, in Fig. 11 using eqn. (2): E(Number
of pointsin@p) = n|Qp|.

To compute the area of @, (denoted |@5|), we let ¥ denote the
angle of the arc illustrated in Fig. 11. Then, it follows from el-

1_
ementary trigonometric identities that sin ’rz;” = % %, and so
1
4 _ 3—=% _ 2 9 .
cosy = Z—. SO, |Qp| = 39d;, — jdncos J2dnsiny =

i9d;, — idysind = 1d; (9 — sind). And plugging this ex-
pression into n|Q,|, we get n|Qp| = nidi(Y¥ — sind). But
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Figure11: Toillustrate constraints on edges. A transmitter at location
p = (z,y) can reach receivers within a circle of radius d,—those on
the other side of the cut must lie within the shaded area @,. ¥ is the
angle of the shaded arc.

now, from the trigonometric identities above, we have that ¥ =

1_ S
2 arccos % % and hence, sind = QSin%cos %, which implies
sin® ¥ = 4sin” ¥ cos® 2, which again implies sin® 9 = 4(1 —

cos? g)cos2 g. Now, since 0 < ¥ < 7, sin ¥ = 2 cos g,/l — cos? g

> 0, and so, finally, we get an expression for n|@,| in terms of n,
dn, and the coordinates of the transmitter p = (z,y):

nQ, = %ndi(ﬁ _ sind)
1 ;—w /
= Endi (2 arccos zdn - ZCOSg 1 — cos? g)
1 1
1_ 1_, (L —z)2
= nd2 | arccos an — 2dn 1— =2 &

Total Number of Edges

The result above is the average number of edges that cross the cut,
starting at a fixed point p = (z,y) in L. To calculate the total
number of edges S that cross the cut on average, we need to add up
n|Q@p| over all transmitters p, (i.e., compute S = 3> ; n|Qy).
And our plan to do this is to approximate this sum by an integral.

The value of |@Q,| is clearly dependent on the location of p: for
p’s in L near the boundary of the cut (x <~ %), ¥ =~ w and hence
the shaded area is large; for p’s still in L but far from the boundary
of the cut (z >~ % — dy), ¥ = 0 and hence the shaded area is
small. Furthermore, except near the top and bottom boundaries,
the area of @, is independent of y. Therefore, to obtain a simple
expression for the sought sum, our first step consists of dividing L
into “K" thin strips of height 1 and width A (for A < d,), and
expanding >° . ; n|Qp| in two different ways:

dn /A

Y nlQul-|{p=(e,y) €L:0<y<1};
k=1 ™

Sa

Sa
dn /A

Y nlQuyl-|{p=(2,9) €EL:dn <y<1-—dn}|;
k=1 e

Sy

Sb

(in both cases, we take £ —d,, + (k —1)A <z < 1 —d, +kA).
S, is an upper bound on ZPEL n|Q@p|, since we may count edges
that end up outside the network; S; is a lower bound, since we may
not count some valid edges close to the network boundary; but as
long as d,, — 0 as n — oo, both bounds become tight and equal
to EpEL lePl

The next step is to observe that once again we can approximate
the size estimates s, and s using egn. (2): s, = nA and s, =



n(1l — 2d,)A. Hence we get:

dn /A dn /A
Sa = Z n|Qay| - nA =n’A Z |Qayl
k=1
=~ / / |Qzy|dzdy;
1-d,
dn /A dn /A
Sy = Z | Qay| - n(1 = 2dn)A = 0’ (1 = 2dn)A ) |Quyl

k=1

Q

1—dn
/ |Qeylddly,

y=dn

h

since A Zk’;/lA |Qzy| is a Riemann sum that, as we let A — 0,
converges to the integral over an appropriate region of |Q5|.
And now we are almost done. Since Sy < >° ., n|Q@p| < Sa,

and we have that for n large, S, ~ S, ~ n? fL |@»]|. we finally
get:

1
2

Z"|Qp z732/;|Qp|dp

pEL

= /;_d"/ dz [arccos

5—»’0 (3 —2)?
— 1— d2

= 7’d / / arccos 2 dydm
2 42 /
—n~d, / . / d2 dydm

= n d /__dn arccos dn dm

22 [2
—n’d, 2 1- 5
1_4 dn dn
5—dn

0 0
@ —n?d3 / arccos udu + n? / uy'1—u?du
1 1
1 1
= n’dd / arccos udu — n® / uy/1 — u?du

0 0

2 3 2 13
= n'd,— in'd,

_ 2,23
= ind,,

|dydz

=
| =
I
8
—
N =
|
8
~
[S)

where (

2% _
d = U.

4.3 Sharp Concentration Results

Our next goal is to show that the actual number of edges straddling
the cut in any realization of the network is sharply concentrated
around its mean. That is, in almost all networks, the number of
edges across the cut is ©(n?d3),

Number of Receivers per Transmitter

Define a binary random variable IN;;, which takes the value 1 if the
i-th node is within the transmission range of a node at coordinates
(z;,y;) on the other side of the cut, as illustrated in Fig. 11:

=L Xi€Qe,u
Ny _{ 0, otherwise.

Let p denote the probability that X; is in Qs ;) (i.e., that N;; =
1). Then, p = |Q, ;| = 3dn (¥ —sin(¥)), with0 <9 < =
is as in Fig. 11. Therefore, defining 4 as (9 — sin(¥)), we have
|Q(z1 ,yJ)| = ’iﬂd = ﬁﬂﬂ
Deﬂne N; =" N as the number of points in @z 4 ;- In
this case, we have E(N]) S Ny =3>" 1 p1+(1-p)0=
np = Ky log(n). Now, again by eqn. (3), we have that

P(IN; — ko log(n)| > drglog(n)) < e oo losm) — p=brs
for 6 defined as in previous applications. As n — oo this prob-
ability tends to zero, and therefore, in almost all network realiza-
tions, a transmitter on the left side of the cut will be able to reach
O(ky log(n)) receivers on the right side.

Total Number of Edges

In a manner analogous to the situation discussed in Section 3, know-
ing that there are ©(nd,) transmitters on the left side of the cut,
and that each transmitter can reach ©(nd2) receivers on the other
side, is not enough to conclude that the total number of edges go-
ing across the cut must be ©(nd3). This is because of our re-
quirement that multiple transmitters not be perfectly aligned with
a receiver for this receiver to decode all these messages simultane-
ously. Therefore, we still need to show that the actual number of
edges is ©(n2d3). And to do this, we need to say something about
the location of points in R that can be reached from L, and not
just count how many. To proceed then, we cut the area of @, into

k9 log(n) slices, each slice of area 19 — L asillustrated in
Fig. 12.

K9 log(n)

Figure 12: Cutting the shaded arc Qzy into regions of area % to
formulate this as an occupancy problem analogous to that of Fig. 9.

As in the occupancy problem considered in Section 3, our goal is
to show that in “most” of these arc slices (most meaning, in all but
a constant fraction of them) we will have nodes capable of forming
straddling edges. This is again a problem of throwing & balls uni-
formly into m bins, where & = m = kg log(n). And again, we
have that with probability that tends to 1 as n — oo, the number of
empty bins is x4 log(n) /e, and hence the number of occupied bins
is ©(ky log(n)).

Consider now a fixed transmitter located at some coordinates
(z,y). Any other transmitter located at coordinates (z’,y') #
(z,y) defines a unique straight line that goes through (z,y) and
(z',y"). If there is a receiver on the other side of the cut along
this line, within reach of both transmitters, then those two edges
will be lost—and those will be the only lost edges, from among the
Ko log(n) that each transmitter has. This situation is illustrated in
Fig. 13.

And then we are done. We have established that in almost all net-
work realizations, there are ©(nd,,) transmitters within each side
of the cut, that each transmitter can reach @(fegdi) receivers on
the other side of the cut, and that integrating out sy we obtain ex-
actly ©(n?d?) edges going across the cut. Therefore, the actual



Figure 13: To illustrate how we could end up losing edges: if the
two black transmitters attempt simultaneously to communicate with
the gray receiver, a collision will occur, and none of the edges will be
created.

number of edges across the cut is sharply concentrated around its
mean, qed.

4.4 Remarks

MST in a Minimally Connected Network
Substituting for d,, ~ %,/lig—" fromeqn. (1), in 2n?d;,, we get

3
3
n® (loﬁ) = %x/ﬁlog% n=0 (\/ﬁlog%(n))

™

Wl

Comparing this expression to the ones obtained in Sections 2
and 3, we see that the MST gain due to the use of multiple simulta-
neous, arbitrarily narrow beam is, at most, © (log?(n)).

Minimum Connectivity Radius Resuting in MST = ©(n)

The minimum d,, resulting in linear MST is obtained by solving
for d,, in ©(n?d3) = O(n). Now, for n large enough, there ex-
ist constants ¢c1 < c2 € R (e1 > 0 and c2 < o0), such that
cin < Zn’dj < cam, or equivalently, clgn_% <dn, < cz%n_%.
Therefore,

dn = O(n" 7).

Minimum Number of Simultaneous Beams

In Section 3, we said that keeping the transmission range constant
resulted in an impractically large number of beams that the receiver
needed to generate, if linear MST was to be achieved by increasing
the complexity of the signal processing algorithms. But if we gen-
erate multiple beams, we have just shown that this minimum radius

now is no longer a constant, but instead tends to zero as @(n‘%).
However, the situation is not much better compared to the single
beam case, and to see this again we compute the minimum number
of simultaneous beams that a transmitter would have to generate.
If now we consider the larger d,, satisfying the requirement of
achieving maximum stable throughput linear in network size, then

v = n-wd’ = n@(n_%) = @(n%)

Therefore, we see that while « is smaller than in the case of the
single beam, we still have an exponential increase relative to the
number required to maintain minimum connectivity—so again, we
claim that directional antennas are not able to provide an effective
means of overcoming the issue with per-node vanishing through-
puts.
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5. CONCLUSIONS

In this paper we have presented our first results on the analysis of
optimal scaling laws for wireless networks. We first formulated this
problem as one of finding the maximum value of a suitably defined
multicommodity flow on random unit-disk graphs. Then, due to
the complexity of analyzing the multicommaodity flow problem, we
looked at a subset of all the possible networks of interest, in which
this problem becomes a regular maximum flow problem. Working
on this restricted class of networks, in one special case we were
able to show that the optimal scaling laws for this restriction are
identical to the optimal scaling laws without the restriction (the case
of omnidirectional transmissions studied by [12]), thus proving the
fact that there is no loss of optimality by considering this restriction.

The next step in this work is to formally prove that there is no
loss of optimality, by working directly with the linear programs that
characterize the solutions of our multicommodity flow problems—
that is the current focus of our work. Future work will deal with
extending the analysis to a richer class of combinatorial structures,
to deal with transmitter/receiver architectures other than directional
antennas.
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APPENDIX
A. BACKGROUND MATERIAL

In this appendix we present some basic definitions and results that
make the paper self-contained. Most concepts come almost without

86

changes from [4] or [23].
A.1 Random Unit-Disk Graphs

In this paper, wireless networks are modeled as random unit disk
graphs. A graph is a unit-disk graph if and only if its vertices can be
put in one-to-one correspondence with equisized circles in a plane,
in such a way that two vertices are joined by an edge if and only if
their corresponding circles intersect [23, Ch. 8].% In our model, the
set of vertices is given by n nodes randomly placed on a square of
unit area:

V ={(xs,9:) €[0,1] x [0,1],7 = 1..n}.

The locations (z;,y;) are iid uniformly distributed pairs over
[0,1] x [0, 1], with joint distribution:

1 if (z,y) € [0,1] x [0,1]
0 otherwise

fxv(z,y) = {

The set of edges depends on a parameter d,,, that we will have
the freedom to choose for different setups:

E={(u,v) €V x V:|u—v| <dn},

and all edges are assumed to have the same constant capacity c¢(u, v)
= L > 0. In order for a node to successfully receive a trans-
mission, the distance between them must be < d,. In general,
throughout this paper we will always assume n large. The resulting
network model is illustrated in Fig. 14.

Figure 14: Randomly placed nodes, connected by edges whenever cir-
cles centered at each node intersect.

Note that some authors choose to define edges in these graphs
when two circles have a non-empty intersection [23], whereas oth-
ers choose to define connectivity when one node is contained in the
circle of another node [12]. We argue that, for the purpose of this
paper, both definitions are completely equivalent, and we can use
either one of them. That is for the simple reason that the graphs ob-
tained under both models are the same, with twice/half the radius
of their circles. But for the asymptotics of interest in this work,
changes of the transmission range by a constant factor (2 in this
case) are of no consequence.

A.2 Flow Networks

Defintions

A flow network G = (V, E) is a graph in which edges (u,v) € E
have a capacity c(u,v) > 0 in each direction (and if (u,v) ¢
E, then we assume c(u,v) = 0). We distinguish two vertices

3In his book [23], West defines interval graphs as intersection
graphs of collections of intervals on the line—the extension to the
plane is straightforward. Marathe et al. [13] have used the defini-
tion that we give up here in their work as well.



in the network, the source s and the sink . A flow in G is a
function f : V x V — R, which satisfies three constraints: (a)
Yu,v € V, f(u,v) < c(u,v) (capacity constraint); (b) Vu,v €
V, f(u,v) = —f(v,u) (skew symmetry); and (c) Vu € V —
{s,t}, >,y f(u,v) = 0 (flow conservation). If f isaflowon G,
the value of f is | f| = >~ .\ f(s,w). In the maximum flow prob-
lem, given a flow network G, the goal is to find a flow of maximum
value.

Acut (S,T) in G is defined as a partition of V" into two nonempty
sets Sand T, i.e.,, S,T # @ satisfy SNT =Pand SUT = V.
An edge of G is said to cross the cut (.S, T') if its two endpoints are
on different sides of the cut, i.e., e = (u,v) € E crosses the cut if
u € Sand v € T (or equivalently, w € T and v € S). The capac-
ity ¢(S, T') of the cut is the sum of the capacities of all the edges
that cross it. Since in our model we assumed ¢(u, v) = L for all
(u,v) € E, for us the capacity of a cut will simplify to L|(S, T)|,
the number of edges going across the cut times L. If (S, T) is a cut
of G, then the net flow across (S, T) is f(S,T) = |f|.

For problems like ours, in which there are multiple sources and
multiple sinks involved, there is a standard trick to reduce this more
general version to the case with a single source and a single sink.
We define a new graph G’ = (V', E'): V' contains the same ver-
tices of V' plus two extra nodes, that we refer to as the supersource
s and the supersink ¢; E’ contains the same edges as E plus, for
each source s; and for each sink t;, edges of the form (s, s;) and
(t;,1), with ¢(s, s;) = c(t;,t) = oo. Then, it is easy to show that
the value of a maximum flow in G’ is the same as the value of a
maximum flow in G.

The Max-Flow/Min-Cut Theorem

Our interest in flow networks stems from the fact that the notion of
a maximum flow is essentially the same as that of maximum stable
throughput: in computing the value of a maximum flow, we seek to
determine what is the largest amount of flow that can be carried by
the network, without violating either link capacity or packet con-
servation constraints. Therefore, we need to give conditions under
which we can make statements about the values of such flows.

In general, we have that the value of any flow f from the su-
persource s to the supersink ¢ in G is bounded from above by the
capacity of any cut of G for which s € S and ¢t € T. Indeed, it
follows in a straightforward manner from the definitions that

Ifl=F(ST) =3 flu,w) <D elu,v) =S, T).

uweSveT uweSveT

And this gives us a general technique to obtain both upper and
lower bounds on the value of a maximum flow:

o To get lower bounds, construct any feasible flow in G.
e To get upper bounds, find the capacity of any valid cut in G.

How good are the bounds thus obtained? It follows from a clas-
sical theorem in the analysis of flow networks that said bounds are
tight: according to the max-flow/min-cut theorem [4], f is a flow of
maximum value iff | f| = ¢(.S, T') (for some cut (S, T)).

A.3 Multicommodity Flows

So far we have considered flows “of a single thing”: that is, there
is one commodity (packets in our problem), of which we want to
move the maximum quantity from s to t. A more general version of
this problem deals with flows of multiple different commodities. In
this case, we still have a flow network G with capacity function c,
and we also have k different commodities. The i-th commodity is
described by (si,7i,d;): s; is the source where this commodity is
produced, r; is the sink where it is consumed, and d; is the demand
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at r;. We define k flows f; as in the standard flow case, and then
define the aggregate flow f as f(u,v) = Ele fi(u, v)—the ag-
gregate flow is constrained to not exceed the capacity of any edge.
In this formulation, there is nothing to maximize: the question of
interest is whether the given network is able to support the flow of
d; units of the i-th commodity from s; to r;, fori = 1...k.
Multicommaodity flow problems appear to be simple generaliza-
tions of flow problems described above, but they are not—the so-
phistication in the level of mathematics required to analyze such
problems is a notch up compared to single commodity flow prob-
lems. For example: whereas there is a simple characterization of
maximum flows in terms of cuts (the max-flow/min-cut theorem
mentioned above), there is no such thing for maximum multicom-
modity flows. In fact, this problem is NP-hard, and the only known
polynomial time algorithm for answering the question of whether
a particular set of commaodities can be supported by a given flow
network consists of formulating this decision problem as a linear
program, and using a polynomial time solver for LPs [4, Ch. 29].



