
Improving Fairness among TCP Flows crossing Wireless
Ad Hoc and Wired Networks

Luqing Yang1 Winston K.G. Seah1,2 Qinghe Yin2
1Department of Electrical Engineering, National University of Singapore, Singapore 117576

2Institute for Infocomm Research, #02-34/37, Teletech Park, 20 Science Park Road, Singapore 117674
Email: 1{engp1781@nus.edu.sg} 2{winston, yinqh@i2r.a-star.edu.sg}

ABSTRACT
In scenarios where wireless ad hoc networks are deployed,
sometimes it would be desirable that ad hoc nodes can
communicate with servers in wired networks to upload or
download data. In these cases TCP connections will span both
wireless ad hoc and wired domains. However, TCP often faces
severe unfairness in this type of connection scenario, which forces
some TCP flows to completely stop transferring any data despite
all links being in good states. In this paper, we propose a simple
scheduling scheme, which helps competing TCP connections to
achieve fairness without much throughput loss. Simulation results
show that our scheme successfully eliminates the extreme
unfairness existing in above-mentioned scenarios.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General – data
communications.

General Terms
Algorithms, Performance.

Keywords
TCP, Fairness, Ad Hoc Network.

1. INTRODUCTION
Wireless ad hoc network have gained more and more attention in
research community recently. It is a promising technology to
provide communications between nodes, mobile or stationary, in
situations where no backbone infrastructures or central control
entities are available. Each node in wireless ad hoc networks can
not only play the role of a communication endpoint, but also a
router between nodes that are multiple hops apart. Thus it is very
useful in battlefield, disaster rescue and many other scenarios. In
these scenarios, there are times that the ad hoc nodes may need to
establish TCP connections with a server in wired networks to

update databases or download and upload data files. For example,
a node that found a potential target may need to send the collected
data back to command center for processing and further decisions;
or the command center needs to update the node with latest target
information.

However, previous research [1][2][3] has shown that in ad hoc
networks TCP performance faces challenges both in terms of
throughput and fairness. Moreover, [4] showed that in scenarios
where TCP spans multihop wireless and wired networks,
unfairness caused a new problem, i.e. the selection of the TCP
maximum congestion window value. On the one hand, a large
congestion window enables a TCP connection to effectively fill
the pipe and ensures a desirable throughput, but at the cost of
severe unfairness, the consequence of which is that some TCP
connections are forced to stop transferring any data while other
TCP connections capture the channel persistently, although all the
nodes in the network are well connected. On the other hand, a
small congestion window does help TCP connections to share the
channel fairly, but the aggregate throughput is unacceptably low
due to the stop-and-wait mode caused by the small congestion
window.

To solve the above problem, we propose to use a simple non-
work-conserving scheduling algorithm to work with the
IEEE802.11 [5] Medium Access Control (MAC) protocol,
replacing the normal FIFO work-conserving scheduling scheme in
ad hoc networks. Simulation results show that our scheme
achieves acceptable throughput and fairness at the same time, and
alleviates the TCP maximum congestion window value selection
problem.

The rest of the paper is organized as follows: we describe our
scheduling algorithm in Section 2. Section 3 presents the
simulation results. Brief analysis and discussions are given in
Section 4. Section 5 reviews related work in the literature.
Finally, Section 6 summarizes our contribution and proposes
some future work.

2. DESIGN OF OUR SCHEME

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiHoc’03, June 1-3, 2003, Annapolis, Maryland, USA.
Copyright 2003 ACM 1-58113-684-6/03/0006…$5.00.

In our subsequent discussions, we call the packets from
application layer “data packets”, and we use “routing packets” to
denote packets generated by routing protocols. In general FIFO
work-conserving scheduling for ad hoc networks, usually routing
packets are treated as high priority packets over data packets;
upon arrival they are enqueued before all data packets. When the
queue knows from MAC that it can output another packet, it will
send the packet at the head of the queue to MAC immediately;
this is what has been implemented in the NS simulator [6]. Here,

57

we propose to set a timer every time after the queue sends a data
packet to MAC. Only after this timer expires, can the queue
output another data packet to MAC. Moreover, the duration of the
timer is decided by the queue output rate. The detailed algorithm
is as follows:

The queue will set a timer every time after it sends a data packet
to MAC for transmission. The duration of the timer is a sum of
three parts. We denote them as D1, D2, and D3, respectively. D1
represents the queue estimation on how long the channel needs to
transmit this packet if no contention occurs. It can be calculated
using packet length divided by the bandwidth of the channel. D2
is a delay, the value of which is decided by the recent queue
output rate. The queue calculates the output rate by counting the
number of bytes, C, it outputs in every fixed interval T. Thus the
value of D2 is updated every T seconds. To decide the value of
D2, we set three thresholds X, Y and Z (X < Y < Z) for C, as
shown in (1). D3 is a random value uniformly distributed between
0 and D2. We use D3 to randomize the delay we add in the queue
and avoid synchronization phenomenon. Although IEEE802.11
will do some randomization in choosing the backoff period, we
can foresee that with D3 the possibility of synchronization and
collisions are further reduced.

2 21

2 22

2 23

2 24

24 23 22 21

,
,
,

,
0

C X D D
X C Y D D
Y C Z D D
C Z D D
D D D D

<= = 
< <= = < <= = 
> = 
> > > >= 

 (1)

D21, D22, D23, and D24 denote the values of the delay that D2 will
take. The heuristics behind equation (1) is that we want to insert
delay in scheduling according to the queue output rate in last
interval T. If C is very low, it is quite possible that the node is at
clear disadvantage in media contention, thus a very small delay
value D21 (D21 can be set to zero) is inserted in scheduling. With
the increasing of the value of C, the delay inserted in scheduling
is also increased. Therefore, the more aggressive the node is, the
more severely it is punished. We regard those nodes that output
less than X bytes in last interval T as nodes experiencing
unfairness, and we regard nodes that output more than threshold Z
in last interval T as greedy nodes that probably use the channel
more than their fair shares. There is a trade-off on deciding the
values of X, Y and Z as well as the delay D2 takes. For example,
if the delays are too small, throughput is guaranteed but the
fairness cannot be improved; on the other hand, if the thresholds
are too low, it is possible that high delay is even imposed on the
node with moderate output rate, thus the fairness is protected but
the throughput degrades too much. We can use more than three
thresholds to gain more efficiency but at the cost of higher
implementation complexity.

For routing packets, we still treat them as high priority packets
over data packets. Upon arrival, they will be enqueued before all
other data packets. Once the queue knows from MAC that it can
transmit a packet, the routing packet at the head of the queue is
dequeued immediately regardless of whether there is a timer
pending. Unlike data packets, the queue will not set any timer
after sending a routing packet and will not count them in
calculating C.

3. SIMULATION RESULTS
3.1 Simulation Environment
We use the NS simulator [6] with ad hoc extensions provided by
the MONARCH project [7] to do simulations. DSDV [8] is
selected as the routing protocol because in our targeted scenarios
TCP connections span wired and wireless domains. At MAC
layer, NS implemented the IEEE802.11 MAC protocol’s
Distributed Coordination Function. We implement our scheduling
algorithm by modifying the priority queue implementation in NS.
Table 1 and Table 2 list relevant parameter settings in NS and in
our scheme, respectively.

Table 1. Parameter settings in ns

Wireless channel bandwidth 2 Mb/s
Wireless node interface queue limit 50 Packets
Version of TCP used New Reno
Nominal radio transmission range 250 m
Buffer management for wired nodes Drop Tail
Queue limit for wired nodes 50 Packets
Packet size 1024 Bytes

 Table 2. Parameter settings in our scheme

X 10000 Bytes
Y 20000 Bytes
Z 50000 Bytes
D21 0 s
D22 0.002 s
D23 0.005 s
D24 0.01 s
Updating interval T 2 s

Xu Kaixin et al [4] identified the severe unfairness among TCP
flows across wireless ad hoc and wired networks. Thus, we first
adopt a scenario similar to situations used in [4] to show how our
scheme solves the problem.

S

1 54 3 2

R
FTP1 FTP2

Figure 1. Scenario A for simulation

In Figure 1, node 3 is a gateway node linking wired and wireless
domains. Wired links connect server S to router R and eventually
to gateway node 3. Five wireless nodes, node 1 to node 5 are
spaced evenly and each is 200m away from its neighbors. At this
distance each node can only communicate with its immediate
neighbors successfully. Two FTP sessions, FTP1 and FTP2 are
used as TCP traffics. Both FTP sources have infinite backlogs to
send. FTP1 is from node 1 to server S; FTP2 is from server S to

58

node 5. Each session traverses two hops in the wireless domain
and two hops in the wired domain. To leave enough warm up
period and also give DSDV time to exchange routing information,
both FTP1 and FTP2 start at 150s and stop at 250s. The
bandwidth of each wired link is 2 Mb/s.
As to wired link delay, we consider two different situations. In the
first situation, the delay of each wired link is 5ms whereas in the
second situation the delay of each wired link is 45ms. We use the
former to simulate situations where ad hoc nodes communicate
with a local wired server and the latter to simulate the case where
ad hoc nodes access remote servers on the Internet. We think that
these two situations do have their practical applications in reality,
such as, at battlefield or disaster rescue site, sometimes the ad hoc
nodes at the front may have the requirement of reliable data
communication with a local wired command center whereas
sometimes ad hoc nodes need to access a remote server through
the Internet to download or upload data files.

Because one parameter of TCP, the maximum congestion
window, has great impact on fairness among TCP flows in
wireless ad hoc networks, we run simulations with different
maximum congestion window values. In the rest of the paper, we
denote maximum congestion window as maxcwnd. The values of
maxcwnd we select are 1, 4, 8, 16 and 32 packets.

We will give a brief explanation on the reasons of the unfairness
among TCP flows in Section 4 of this paper. But we would refer
interested readers to [3][4] for detail analysis and explanations.

For convenience, in the rest of the paper we refer to the work-
conserving FIFO scheduling scheme that is commonly used as the
normal FIFO scheme. We call the scheme proposed in this paper
our scheme. TCP1 and TCP2 are used to denote the TCP
connections corresponding to FTP1 and FTP2. We use goodput of
each connection, aggregate goodput, and fairness as the metrics
for evaluation. Here, we define the goodput of a connection as
total number of bits that are successfully received by the receiver
in a unit time.

3.2 Simulation Results
Figure 2 and Figure 3 present the respective results obtained by
using the normal FIFO scheme and our scheme. The wired link
delay is 5ms. It can be seen that in both figures the aggregate
goodput increases with the increasing of maxcwnd value. But the
individual goodput of each connection undergoes quite different
changes in the two figures.
In Figure 2, the two TCP flows share the channel fairly only when
maxcwnd is one packet. Once the maxcwnd is greater than one
packet, the goodput of FTP1 drops drastically and the aggregate
goodput almost completely belongs to FTP2. The higher the
maxcwnd value is, the worse the fairness.
As a sharp contrast, in Figure 3 where we use our scheme, the two
TCP flows always share the channel fairly regardless of the value
of maxcwnd. Meanwhile, the aggregate goodput of our scheme is
also quite acceptable. For example, comparing the aggregate
goodput in Figure 2 and Figure 3 for maxcwnd value of 16
packets, the degradation caused by our scheme is only 11.2
percent. Actually, as a common phenomenon in any resource
sharing system, it is not surprising that only serving one or few
connections would achieve higher throughput than serving every
connections fairly.

0
100
200
300
400
500
600

G
oo

dp
ut

 (k
b/

s)

1 4 8 16 32

TCP maxcwnd

FTP1 FTP2 SUM

Figure 2. Goodput of normal FIFO scheme for Scenario A

Wired link delay = 5 ms

0
100
200
300
400
500
600

G
oo

dp
ut

 (k
b/

s)
1 4 8 16 32

TCP maxcwnd

FTP1 FTP2 SUM

Figure 3. Goodput of our scheme for Scenario A

Wired link delay = 5 ms

To give better insights into the results of Figure 2 and Figure 3,
we show examples of TCP1 and TCP2 acknowledgement number
progress in Figure 4 to Figure 7.

150 200 2500

1000

2000

3000

4000

5000

6000

Ac
k

Se
qu

en
ce

 N
um

be
r

Tim e(s)

TCP1
TCP2

Figure 4. maxcwnd = 4, wired link delay = 5ms, FIFO scheme

We can see that the problem here is more than unfairness. In fact,
during the simulations, one connection is stifled by the other
connection. This is different from the situations in wireless LAN
or cellular network, where unfairness usually only causes some
connections to use resources less than their fair shares. However,
here in ad hoc networks, the unfairness results in TCP1 being
active only at the beginning of simulation, then it timeouts
consecutively and is forced to stop transferring any packets,
despite all links being in good state. It is clear that the normal
FIFO scheduling scheme cannot ensure every connection a

59

sustainable throughput, let alone a fair share. On the contrary,
both Figure 5 and Figure 7 show that our scheme maintains a
good fairness property.

150 200 2500

500

1000

1500

2000

2500

3000

Ac
k

Se
qu

en
ce

 N
um

be
r

Time(s)

TCP1
TCP2

Figure 5. maxcwnd = 4, wired link delay = 5ms, our scheme

150 200 2500

1000

2000

3000

4000

5000

6000

7000

Tim e(s)

Ac
k

Se
qu

en
ce

 N
um

be
r

TCP1
TCP2

Figure 6. maxcwnd = 8, wired link delay =5ms, FIFO scheme

150 200 2500

500

1000

1500

2000

2500

3000

3500

Time(s)

Ac
k

Se
qu

en
ce

 N
um

be
r

TCP1
TCP2

Figure 7. maxcwnd = 8, wired link delay = 5ms, our scheme

From another perspective, we argue that our scheme does improve
the aggregate goodput compared with normal FIFO scheduling if
fairness is taken into considerations. For example, when situations
require sustainable throughput for every TCP connection, if using
normal FIFO scheduling for the scenario in Figure 1, the only
choice is to set the maxcwnd to one packet, and the aggregate
goodput is 378.4 kb/s, as shown in Figure 2; if using our scheme,
we can set maxcwnd to any large value to achieve both
satisfactory goodput as well as fairness. In Figure 3, when
maxcwnd is eight packets, the aggregate goodput is 497.5 kb/s,
31.5 percent higher than the 378.4 kb/s of the normal FIFO
scheme.

To have a thorough investigation of our scheme, we change the
wired link delay from 5ms to 45ms. Figure 8 and Figure 9 give
the respective results of normal FIFO scheduling and our scheme.

0
100
200
300
400
500
600

G
oo

dp
ut

 (k
b/

s)

1 4 8 16 32

TCP maxcwnd

FTP1 FTP2 SUM

Figure 8. Goodput of normal FIFO scheme for Scenario A

Wired link delay = 45 ms

0

100

200

300

400

500

G
oo

dp
ut

 (k
b/

s)

1 4 8 16 32

TCP maxcwnd

FTP1 FTP2 SUM

Figure 9. Goodput of our scheme for Scenario A

Wired link delay = 45 ms

Figure 8 indicates that as long as maxcwnd is no more than eight
packets, the two TCP flows share the media fairly when using the
normal FIFO scheme. When maxcwnd is eight packets, the
aggregate goodput is 500.5 kb/s and quite acceptable. Generally,
we could say that eight packets is an optimal point for maxcwnd
value in this case if we take both fairness and goodput into
considerations.

But the problem of using normal FIFO scheme is that there is no
method with which we can determine this optimal point before we
run simulations. Furthermore, the delay and available bandwidth
on wired network may be dynamic due to cross traffic, thus the
corresponding optimal point is also dynamic. Therefore, even if
we have a method to determine the optimal value for maxcwnd, it
is quite difficult to set it dynamically, not to mention sometimes
the optimal point does not exist at all. An example is shown
Figure 2, where you cannot obtain high aggregate goodput and
acceptable fairness at the same time.

However, by using our scheme, there is no need to find the
optimal point for maxcwnd. This is because in our scheme the
aggregate goodput increases with the increasing of maxcwnd
value while maintaining fairness; we only need to set maxcwnd to
a value high enough to achieve high goodput. In Figure 9
aggregate goodput corresponding to maxcwnd of 8, 16 and 32

60

packets are 477.8 kb/s, 492.5 kb/s, and 495.0 kb/s. Compared with
500.5 kb/s goodput obtained at the optimal point in Figure 8, our
scheme works very well.

In fact, besides the scenario in Figure 1, we found that severe
unfairness exists in many situations where there are TCP flows
crossing ad hoc and wired domains. Here, we present another
scenario to demonstrate the effectiveness of our scheme. As
shown in Figure 10, this time FTP2 is still from node S to node 5
whereas FTP1 is from node 1 to node 2. Both sessions start at
150s and stop at 250s. TCP1 and TCP2 are the TCP connections
corresponding to FTP1 and FTP2. The bandwidth and delay of
each wired link is 2Mb/s and 5ms.

S

1 54 3 2

R

FTP1 FTP2

Figure 10. Scenario B for simulation

0
200
400
600
800

1000
1200

G
oo

dp
ut

 (k
b/

s)

1 4 8 16

TCP maxcwnd

FTP1 FTP2 SUM

Figure 11. Goodput of normal FIFO scheme for Scenario B

0
100
200
300
400
500
600
700
800

G
oo

dp
ut

 (k
b/

s)

1 4 8 16

TCP maxcwnd

FTP1 FTP2 SUM

Figure 12. Goodput of our scheme for Scenario B

Figure 11 gives the results of using normal FIFO scheduling. The
severe unfairness is shown clearly. When maxcwnd is one or four
packets, FTP1 will stifle FTP2. On the contrary, when maxcwnd
is eight or sixteen packets, FTP2 will stifle FTP1. It is evident that

these two connections cannot coexist whatever maxcwnd value is
used. Figure 12 shows the results obtained by using our scheme.
Now, the two FTP sessions coordinate well in sharing the channel
and they both achieve sustainable throughput during simulation. It
is reasonable that the goodput of FTP1 is more than two times the
goodput of FTP2, because FTP1 is a one-hop connection whereas
FTP2 crosses two hops in wireless and two hops in wired domain.
To gain more insights, Figure 13 and Figure 14 present examples
of TCP acknowledgement number progress by using the normal
FIFO scheme and our scheme, respectively.

150 200 2500

1000

2000

3000

4000

5000

6000

7000

Time(s)

Ac
k

Se
qu

en
ce

 N
um

be
r

TCP1
TCP2

Figure 13. Normal FIFO scheme, maxcwnd = 8, Scenario B

150 200 2500

1000

2000

3000

4000

5000

6000

7000

Time(s)

Ac
k

Se
qu

en
ce

 N
um

be
r

TCP1
TCP2

Figure 14. Our scheme, maxcwnd = 8, Scenario B

The above-mentioned extreme unfairness not only exists in wired-
cum-wireless ad hoc environments, but also exists among TCP
flows in pure ad hoc environments. Figure 15 shows a pure ad hoc
scenario. Five nodes evenly spaced with 200 meters away from
each other. One TCP flow (TCP1) is a two-hop connection from
node 5 to node 3, whereas another TCP flow (TCP2) is from node
1 to node 2. Xu and Saadawi [3] have shown that in this scenario
once the one-hop connection starts, the two-hop connection is
completely forced down and even cannot get a chance to restart.
In our simulation, DSR [9] is used as the routing protocol. The
two-hop connection starts at 0 second, whereas the one-hop
connection starts at 10.0 second.

 node1 node 2 node 3 node 4 node 5

Figure 15. A pure ad hoc scenario with extreme unfairness

From Figure 16 we can see that just as [3] has stated, the one-hop
TCP flow completely force down the two-hop TCP connection.
The TCP1 flow does not receive any new acknowledgement after

61

31.5 second. Figure 17 shows the results obtained by using our
scheme, now both flows progress roughly smooth and co-exist
well. The extreme unfairness once again was eliminated by our
scheme.

0 20 40 60 80 1000

2000

4000

6000

8000

10000

12000

14000

Tim es(s)

Ac
k

Se
qu

en
ce

 N
um

be
r

TCP2
TCP1

Figure 16. Ack Sequence Progress, normal FIFO scheme

0 20 40 60 80 1000

1000

2000

3000

4000

5000

6000

Times(s)

Ac
k

Se
qu

en
ce

 N
um

be
r

TCP2
TCP1

Figure 17. Ack Sequence Progress, our scheme

One thing to note is that in the simulation results the aggregate
goodput experiences moderate degradation by using our scheme
compared with using normal FIFO scheme. However, the
degradation is acceptable considering the fact that it completely
eliminates the extreme unfairness and ensures a sustainable
throughput for every TCP connection. Moreover, in situations
with extreme unfairness, the term of aggregate goodput is
misleading because it is almost completely contributed by one or
few connections with all other TCP connections starved out.
Considering the situations where ad hoc networks are deployed,
such as battlefield and disaster rescue, everyone could foresee the
implications of severe unfairness. No one will have the desire to
implement an ad hoc network if it even cannot ensure every
connection a sustainable throughput, let alone fair share, when all
links are in good states.

4. ANALYSIS AND DISCUSSIONS
The severe unfairness among TCP flows in IEEE802.11-based
wireless ad hoc networks is the result of joint interactions of TCP,
the FIFO work-conserving scheduling scheme, and the
IEEE802.11 MAC protocol. First, TCP would send packets back-
to-back when congestion window allows. Moreover, TCP traffic
is self-clocking, i.e. the faster the acknowledgement comes back,
the faster the data packet is sent out. Second, IEEE802.11
protocol always favors the node that is successful in the latest
contention and leaves the failed nodes in exponential backoff.
Lastly, work-conserving scheduling helps the last successful node

to occupy the channel persistently by always providing packets in
time. In fact, as long as normal work-conserving scheduling is
used with IEEE802.11 MAC protocol, even if other traffic types
instead of TCP run on ad hoc networks, the unfairness problem
will exist. From a different perspective, the packet generation
interval of CBR traffic plays a similar role to some extent as the
delay we added in scheduling. That is the reason why using work-
conserving scheduling with CBR traffic usually does not show
clear unfairness. However, once the CBR load is high, i.e. the
packet generation interval is small enough, the unfairness will be
shown clearly as well. Therefore, just as [3] has pointed out, TCP
just exacerbates the unfairness compared with other traffic types.
By adding extra adaptive delay in scheduling, our scheme
successfully eliminates the severe unfairness among TCP flows
spanning multihop wireless and wired networks. The heuristics
behind this design is that by introducing extra adaptive delay we
want to only penalize those aggressive nodes to some extent,
which grab the channel persistently, and help nodes that fail
medium contention consecutively to enjoy the resource. The
faster the node sends out packets, the longer the delay is inserted;
the slower the node sends out packets, the shorter the delay is
inserted, or even no delay is inserted.
As reported in [4], there is fundamental difference between TCP
parameter tuning in wireless ad hoc networks with wired
connection and in pure ad hoc scenarios. In pure ad hoc networks,
large congestion window usually does not increase the throughput
but worsen fairness. However, for TCP connections spanning both
wired and wireless ad hoc domains, a small congestion window
usually causes unacceptably low throughput. Using our scheme,
large congestion window is no more a threat to fairness; on the
contrary, it contributes to the satisfactory throughput.
We could foresee that in scenarios where there is only one TCP
connection in the network, or each TCP connection always run in
disjoint areas without contentions, our scheme would no doubt
lead to unnecessary throughput loss. However, we argue that
those cases are rare and unrealistic in a foreseeable practical
wireless ad hoc network.

5. RELATED WORK
Several researchers have studied TCP fairness in multihop
wireless networks. Tang and Gerla [10] investigated the issue of
fair sharing of MAC among TCP flows in wireless ad hoc
networks and a yield time scheme is proposed to improve fairness
by introducing a larger yield time. However, larger yield time for
every node will even penalize the node that used the channel less
than its fair share, only because it is the node that used the
channel last. Xu Kaixin et al [4] identified the unfairness problem
when TCP spans both wired and wireless ad hoc networks, and
they give valuable insights into TCP behavior over this type of
environment. Xu and Saadawi [3] showed that hidden and
exposed terminal problems, large sensing and interfering ranges
are the main reasons of unfairness among TCP flows over
IEEE802.11 MAC protocol.
To address fairness at MAC layer, several fair scheduling
schemes have been proposed for general shared wireless channel
environment. For example, Vaidya et al [11] presented a
distributed fair scheduling algorithm for wireless LAN that
emulates Self-Clocked Fair Queuing in a distributed manner and
chooses a backoff interval that is proportional to the finish tag of

62

the packet to be transmitted, while Nandagopal et al [12]
proposed a general analytical framework that can translate any
given fairness requirement into a matching backoff scheme. These
schemes address the fairness of MAC in general whereas here we
try to eliminate the extreme unfairness among TCP flows in a
broad class of ad hoc network environments. On the other hand,
compared with the scheme proposed in this paper, these schemes
are backoff-based solutions, i.e. they try to achieve fairness by
modifying the backoff policy of MAC protocol.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose a scheme, which successfully eliminates
the severe unfairness that TCP will likely face when the
connections cross wired and IEEE802.11-based wireless ad hoc
networks. Our work reveals that the work-conserving scheduling
may amplify the adverse effects caused by interactions between
TCP and the IEEE802.11 MAC protocol. The simulation results
show that our scheme improves the fairness among TCP
connections greatly and ensures every connection a sustainable
throughput at the cost of moderate throughput degradation. Our
future work includes testing of this scheme in scenarios with more
sources contending for service from the base station. For proper
parameterization, we will also use mathematics methods to
analyze this scheme.

7. ACKNOWLEDGMENTS
We would like to thank the three anonymous reviewers of this
paper who gave valuable comments. We also thank Mani
Srivastava for his help and feedback on the revision of this paper.

8. REFERENCES
[1] M. Gerla, K. Tang, and R. Bagrodia, “TCP Performance in

Wireless Multi-hop Networks,” In proceedings of IEEE
WMCSA ’99, New Orleans, LA, Feb 1999.

[2] G. Holland, and N. Vaidya, “Analysis of TCP Performance
over Mobile Ad Hoc Networks,” In proceedings of
MobiCom ’99, Seattle, WA, Aug 1999.

[3] S. Xu, and T. Saadawi, “Does the IEEE 802.11 MAC
Protocol Work Well in Multihop Wireless Ad Hoc
Networks?” IEEE Communications Magazine, Volume 39,
Issue 6, Jun 2001.

[4] K. Xu, S. Bae, S. Lee, and M. Gerla, “TCP Behavior across
Multihop Wireless Networks and the Wired Internet,” In
proceedings of WoWMoM ’02, Atlanta, GA, Sep 2002.

[5] IEEE, “Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications,” IEEE Standard
802.11, Jun 1999.

[6] Network Simulator. http://www.isi.edu/nsnam/ns/

[7] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. Jetcheva,
“A Performance Comparison of Multi-hop Wireless Ad Hoc
Network Routing Protocols,” In ACM/IEEE Int. Conf. on
Mobile Computing and Networking, Oct 1998.

[8] C. Perkins, and P. Bhagwat, “Highly Dynamic Destination-
Sequenced Distance-Vector Routing (DSDV) for Mobile
Computers,” In proceedings of the SIGCOMM ’94
Conference on Communications Architectures, Protocols and
Applications, Aug 1994.

[9] J. Broch, D. B. Johnson, and D. A. Maltz, “The Dynamic
Source Routing Protocol for Mobile Ad Hoc Networks,”
Internet-Draft, draft-ietf-manet-dsr-03.txt, October 1999.

[10] K. Tang, and M. Gerla, “Fair sharing of MAC under TCP in
wireless ad hoc networks,” In proceedings of IEEE MMT
’99, Venice, Italy, Oct 1999.

[11] N. Vaidya, P. Bahl, and S. Gupta, “Distributed Fair
Scheduling in a Wireless LAN,” In proceedings of ACM
MobiCom 2000. Boston, Aug 2000.

[12] T. Nandagopal, T. E. Kim, X. Gao, and V. Bharghavan,
“Achieving MAC Layer Fairness in Wireless Packet
Networks,” In proceedings of ACM MobiCom 2000, Boston,
Aug 2000.

63

	INTRODUCTION
	DESIGN OF OUR SCHEME
	SIMULATION RESULTS
	Simulation Environment
	Simulation Results

	ANALYSIS AND DISCUSSIONS
	RELATED WORK
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

