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ABSTRACT 
In scenarios where wireless ad hoc networks are deployed, 
sometimes it would be desirable that ad hoc nodes can 
communicate with servers in wired networks to upload or 
download data. In these cases TCP connections will span both 
wireless ad hoc and wired domains. However, TCP often faces 
severe unfairness in this type of connection scenario, which forces 
some TCP flows to completely stop transferring any data despite 
all links being in good states. In this paper, we propose a simple 
scheduling scheme, which helps competing TCP connections to 
achieve fairness without much throughput loss. Simulation results 
show that our scheme successfully eliminates the extreme 
unfairness existing in above-mentioned scenarios. 

Categories and Subject Descriptors 
C.2.0 [Computer-Communication Networks]: General – data 
communications. 

General Terms 
Algorithms, Performance. 

Keywords 
TCP, Fairness, Ad Hoc Network. 

1. INTRODUCTION 
Wireless ad hoc network have gained more and more attention in 
research community recently. It is a promising technology to 
provide communications between nodes, mobile or stationary, in 
situations where no backbone infrastructures or central control 
entities are available. Each node in wireless ad hoc networks can 
not only play the role of a communication endpoint, but also a 
router between nodes that are multiple hops apart. Thus it is very 
useful in battlefield, disaster rescue and many other scenarios. In 
these scenarios, there are times that the ad hoc nodes may need to 
establish TCP connections with a server in wired networks to 

update databases or download and upload data files. For example, 
a node that found a potential target may need to send the collected 
data back to command center for processing and further decisions; 
or the command center needs to update the node with latest target 
information. 

However, previous research [1][2][3] has shown that in ad hoc 
networks TCP performance faces challenges both in terms of 
throughput and fairness. Moreover, [4] showed that in scenarios 
where TCP spans multihop wireless and wired networks, 
unfairness caused a new problem, i.e. the selection of the TCP 
maximum congestion window value. On the one hand, a large 
congestion window enables a TCP connection to effectively fill 
the pipe and ensures a desirable throughput, but at the cost of 
severe unfairness, the consequence of which is that some TCP 
connections are forced to stop transferring any data while other 
TCP connections capture the channel persistently, although all the 
nodes in the network are well connected. On the other hand, a 
small congestion window does help TCP connections to share the 
channel fairly, but the aggregate throughput is unacceptably low 
due to the stop-and-wait mode caused by the small congestion 
window. 

To solve the above problem, we propose to use a simple non-
work-conserving scheduling algorithm to work with the 
IEEE802.11 [5] Medium Access Control (MAC) protocol, 
replacing the normal FIFO work-conserving scheduling scheme in 
ad hoc networks. Simulation results show that our scheme 
achieves acceptable throughput and fairness at the same time, and 
alleviates the TCP maximum congestion window value selection 
problem. 

The rest of the paper is organized as follows: we describe our 
scheduling algorithm in Section 2. Section 3 presents the 
simulation results. Brief analysis and discussions are given in 
Section 4. Section 5 reviews related work in the literature. 
Finally, Section 6 summarizes our contribution and proposes 
some future work. 

2. DESIGN OF OUR SCHEME  
 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
MobiHoc’03, June 1-3, 2003, Annapolis, Maryland, USA. 
Copyright 2003 ACM 1-58113-684-6/03/0006…$5.00. 

In our subsequent discussions, we call the packets from 
application layer “data packets”, and we use “routing packets” to 
denote packets generated by routing protocols. In general FIFO 
work-conserving scheduling for ad hoc networks, usually routing 
packets are treated as high priority packets over data packets; 
upon arrival they are enqueued before all data packets. When the 
queue knows from MAC that it can output another packet, it will 
send the packet at the head of the queue to MAC immediately; 
this is what has been implemented in the NS simulator [6]. Here, 
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we propose to set a timer every time after the queue sends a data 
packet to MAC. Only after this timer expires, can the queue 
output another data packet to MAC. Moreover, the duration of the 
timer is decided by the queue output rate. The detailed algorithm 
is as follows: 

The queue will set a timer every time after it sends a data packet 
to MAC for transmission. The duration of the timer is a sum of 
three parts. We denote them as D1, D2, and D3, respectively. D1 
represents the queue estimation on how long the channel needs to 
transmit this packet if no contention occurs. It can be calculated 
using packet length divided by the bandwidth of the channel. D2 
is a delay, the value of which is decided by the recent queue 
output rate. The queue calculates the output rate by counting the 
number of bytes, C, it outputs in every fixed interval T. Thus the 
value of D2 is updated every T seconds. To decide the value of 
D2, we set three thresholds X, Y and Z  (X < Y < Z) for C, as 
shown in (1). D3 is a random value uniformly distributed between 
0 and D2. We use D3 to randomize the delay we add in the queue 
and avoid synchronization phenomenon. Although IEEE802.11 
will do some randomization in choosing the backoff period, we 
can foresee that with D3 the possibility of synchronization and 
collisions are further reduced. 
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D21, D22, D23, and D24 denote the values of the delay that D2 will 
take. The heuristics behind equation (1) is that we want to insert 
delay in scheduling according to the queue output rate in last 
interval T. If C is very low, it is quite possible that the node is at 
clear disadvantage in media contention, thus a very small delay 
value D21 (D21 can be set to zero) is inserted in scheduling. With 
the increasing of the value of C, the delay inserted in scheduling 
is also increased. Therefore, the more aggressive the node is, the 
more severely it is punished. We regard those nodes that output 
less than X bytes in last interval T as nodes experiencing 
unfairness, and we regard nodes that output more than threshold Z 
in last interval T as greedy nodes that probably use the channel 
more than their fair shares. There is a trade-off on deciding the 
values of X, Y and Z as well as the delay D2 takes. For example, 
if the delays are too small, throughput is guaranteed but the 
fairness cannot be improved; on the other hand, if the thresholds 
are too low, it is possible that high delay is even imposed on the 
node with moderate output rate, thus the fairness is protected but 
the throughput degrades too much. We can use more than three 
thresholds to gain more efficiency but at the cost of higher 
implementation complexity. 

For routing packets, we still treat them as high priority packets 
over data packets. Upon arrival, they will be enqueued before all 
other data packets. Once the queue knows from MAC that it can 
transmit a packet, the routing packet at the head of the queue is 
dequeued immediately regardless of whether there is a timer 
pending. Unlike data packets, the queue will not set any timer 
after sending a routing packet and will not count them in 
calculating C. 

3. SIMULATION RESULTS 
3.1 Simulation Environment 
We use the NS simulator [6] with ad hoc extensions provided by 
the MONARCH project [7] to do simulations. DSDV [8] is 
selected as the routing protocol because in our targeted scenarios 
TCP connections span wired and wireless domains. At MAC 
layer, NS implemented the IEEE802.11 MAC protocol’s 
Distributed Coordination Function. We implement our scheduling 
algorithm by modifying the priority queue implementation in NS. 
Table 1 and Table 2 list relevant parameter settings in NS and in 
our scheme, respectively. 

Table 1. Parameter settings in ns  

Wireless channel bandwidth 2 Mb/s 
Wireless node interface queue limit 50 Packets 
Version of TCP used New Reno 
Nominal radio transmission range 250 m 
Buffer management for wired nodes Drop Tail 
Queue limit for wired nodes 50 Packets 
Packet size 1024 Bytes 

 
  Table 2. Parameter settings in our scheme 

X 10000 Bytes 
Y 20000 Bytes 
Z 50000 Bytes 
D21 0 s 
D22 0.002 s 
D23 0.005 s 
D24 0.01 s 
Updating interval T 2 s 

 
Xu Kaixin et al [4] identified the severe unfairness among TCP 
flows across wireless ad hoc and wired networks. Thus, we first 
adopt a scenario similar to situations used in [4] to show how our 
scheme solves the problem.  

 
S 

1 54 3 2

R 
FTP1 FTP2 

 
Figure 1. Scenario A for simulation 

In Figure 1, node 3 is a gateway node linking wired and wireless 
domains. Wired links connect server S to router R and eventually 
to gateway node 3. Five wireless nodes, node 1 to node 5 are 
spaced evenly and each is 200m away from its neighbors. At this 
distance each node can only communicate with its immediate 
neighbors successfully. Two FTP sessions, FTP1 and FTP2 are 
used as TCP traffics. Both FTP sources have infinite backlogs to 
send. FTP1 is from node 1 to server S; FTP2 is from server S to 
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node 5. Each session traverses two hops in the wireless domain 
and two hops in the wired domain. To leave enough warm up 
period and also give DSDV time to exchange routing information, 
both FTP1 and FTP2 start at 150s and stop at 250s. The 
bandwidth of each wired link is 2 Mb/s. 
As to wired link delay, we consider two different situations. In the 
first situation, the delay of each wired link is 5ms whereas in the 
second situation the delay of each wired link is 45ms. We use the 
former to simulate situations where ad hoc nodes communicate 
with a local wired server and the latter to simulate the case where 
ad hoc nodes access remote servers on the Internet. We think that 
these two situations do have their practical applications in reality, 
such as, at battlefield or disaster rescue site, sometimes the ad hoc 
nodes at the front may have the requirement of reliable data 
communication with a local wired command center whereas 
sometimes ad hoc nodes need to access a remote server through 
the Internet to download or upload data files. 

Because one parameter of TCP, the maximum congestion 
window, has great impact on fairness among TCP flows in 
wireless ad hoc networks, we run simulations with different 
maximum congestion window values. In the rest of the paper, we 
denote maximum congestion window as maxcwnd. The values of 
maxcwnd we select are 1, 4, 8, 16 and 32 packets. 

We will give a brief explanation on the reasons of the unfairness 
among TCP flows in Section 4 of this paper. But we would refer 
interested readers to [3][4] for detail analysis and explanations.  

For convenience, in the rest of the paper we refer to the work-
conserving FIFO scheduling scheme that is commonly used as the 
normal FIFO scheme. We call the scheme proposed in this paper 
our scheme. TCP1 and TCP2 are used to denote the TCP 
connections corresponding to FTP1 and FTP2. We use goodput of 
each connection, aggregate goodput, and fairness as the metrics 
for evaluation. Here, we define the goodput of a connection as 
total number of bits that are successfully received by the receiver 
in a unit time. 

3.2 Simulation Results 
Figure 2 and Figure 3 present the respective results obtained by 
using the normal FIFO scheme and our scheme. The wired link 
delay is 5ms. It can be seen that in both figures the aggregate 
goodput increases with the increasing of maxcwnd value. But the 
individual goodput of each connection undergoes quite different 
changes in the two figures. 
In Figure 2, the two TCP flows share the channel fairly only when 
maxcwnd is one packet. Once the maxcwnd is greater than one 
packet, the goodput of FTP1 drops drastically and the aggregate 
goodput almost completely belongs to FTP2. The higher the 
maxcwnd value is, the worse the fairness. 
As a sharp contrast, in Figure 3 where we use our scheme, the two 
TCP flows always share the channel fairly regardless of the value 
of maxcwnd. Meanwhile, the aggregate goodput of our scheme is 
also quite acceptable. For example, comparing the aggregate 
goodput in Figure 2 and Figure 3 for maxcwnd value of 16 
packets, the degradation caused by our scheme is only 11.2 
percent. Actually, as a common phenomenon in any resource 
sharing system, it is not surprising that only serving one or few 
connections would achieve higher throughput than serving every 
connections fairly. 
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Figure 2. Goodput of normal FIFO scheme for Scenario A 

Wired link delay = 5 ms 
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Figure 3. Goodput of our scheme for Scenario A                

Wired link delay = 5 ms 

To give better insights into the results of Figure 2 and Figure 3, 
we show examples of TCP1 and TCP2 acknowledgement number 
progress in Figure 4 to Figure 7. 
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Figure 4. maxcwnd = 4, wired link delay = 5ms, FIFO scheme 

We can see that the problem here is more than unfairness. In fact, 
during the simulations, one connection is stifled by the other 
connection. This is different from the situations in wireless LAN 
or cellular network, where unfairness usually only causes some 
connections to use resources less than their fair shares. However, 
here in ad hoc networks, the unfairness results in TCP1 being 
active only at the beginning of simulation, then it timeouts 
consecutively and is forced to stop transferring any packets, 
despite all links being in good state. It is clear that the normal 
FIFO scheduling scheme cannot ensure every connection a 
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sustainable throughput, let alone a fair share. On the contrary, 
both Figure 5 and Figure 7 show that our scheme maintains a 
good fairness property. 
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Figure 5. maxcwnd = 4, wired link delay = 5ms, our scheme 
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Figure 6. maxcwnd = 8, wired link delay =5ms, FIFO scheme 
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Figure 7. maxcwnd = 8, wired link delay = 5ms, our scheme 

From another perspective, we argue that our scheme does improve 
the aggregate goodput compared with normal FIFO scheduling if 
fairness is taken into considerations. For example, when situations 
require sustainable throughput for every TCP connection, if using 
normal FIFO scheduling for the scenario in Figure 1, the only 
choice is to set the maxcwnd to one packet, and the aggregate 
goodput is 378.4 kb/s, as shown in Figure 2; if using our scheme, 
we can set maxcwnd to any large value to achieve both 
satisfactory goodput as well as fairness. In Figure 3, when 
maxcwnd is eight packets, the aggregate goodput is 497.5 kb/s, 
31.5 percent higher than the 378.4 kb/s of the normal FIFO 
scheme. 

To have a thorough investigation of our scheme, we change the 
wired link delay from 5ms to 45ms. Figure 8 and Figure 9 give 
the respective results of normal FIFO scheduling and our scheme. 
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Figure 8. Goodput of normal FIFO scheme for Scenario A   

Wired link delay = 45 ms 
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Figure 9. Goodput of our scheme for Scenario A                  

Wired link delay = 45 ms 

Figure 8 indicates that as long as maxcwnd is no more than eight 
packets, the two TCP flows share the media fairly when using the 
normal FIFO scheme. When maxcwnd is eight packets, the 
aggregate goodput is 500.5 kb/s and quite acceptable. Generally, 
we could say that eight packets is an optimal point for maxcwnd 
value in this case if we take both fairness and goodput into 
considerations. 

But the problem of using normal FIFO scheme is that there is no 
method with which we can determine this optimal point before we 
run simulations. Furthermore, the delay and available bandwidth 
on wired network may be dynamic due to cross traffic, thus the 
corresponding optimal point is also dynamic. Therefore, even if 
we have a method to determine the optimal value for maxcwnd, it 
is quite difficult to set it dynamically, not to mention sometimes 
the optimal point does not exist at all. An example is shown 
Figure 2, where you cannot obtain high aggregate goodput and 
acceptable fairness at the same time. 

However, by using our scheme, there is no need to find the 
optimal point for maxcwnd. This is because in our scheme the 
aggregate goodput increases with the increasing of maxcwnd 
value while maintaining fairness; we only need to set maxcwnd to 
a value high enough to achieve high goodput. In Figure 9 
aggregate goodput corresponding to maxcwnd of 8, 16 and 32 
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packets are 477.8 kb/s, 492.5 kb/s, and 495.0 kb/s. Compared with 
500.5 kb/s goodput obtained at the optimal point in Figure 8, our 
scheme works very well. 

In fact, besides the scenario in Figure 1, we found that severe 
unfairness exists in many situations where there are TCP flows 
crossing ad hoc and wired domains. Here, we present another 
scenario to demonstrate the effectiveness of our scheme. As 
shown in Figure 10, this time FTP2 is still from node S to node 5 
whereas FTP1 is from node 1 to node 2. Both sessions start at 
150s and stop at 250s. TCP1 and TCP2 are the TCP connections 
corresponding to FTP1 and FTP2. The bandwidth and delay of 
each wired link is 2Mb/s and 5ms. 
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Figure 10. Scenario B for simulation 
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Figure 11. Goodput of normal FIFO scheme for Scenario B 
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Figure 12. Goodput of our scheme for Scenario B 

Figure 11 gives the results of using normal FIFO scheduling. The 
severe unfairness is shown clearly. When maxcwnd is one or four 
packets, FTP1 will stifle FTP2. On the contrary, when maxcwnd 
is eight or sixteen packets, FTP2 will stifle FTP1. It is evident that 

these two connections cannot coexist whatever maxcwnd value is 
used. Figure 12 shows the results obtained by using our scheme. 
Now, the two FTP sessions coordinate well in sharing the channel 
and they both achieve sustainable throughput during simulation. It 
is reasonable that the goodput of FTP1 is more than two times the 
goodput of FTP2, because FTP1 is a one-hop connection whereas 
FTP2 crosses two hops in wireless and two hops in wired domain. 
To gain more insights, Figure 13 and Figure 14 present examples 
of TCP acknowledgement number progress by using the normal 
FIFO scheme and our scheme, respectively. 
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Figure 13. Normal FIFO scheme, maxcwnd = 8, Scenario B 
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Figure 14. Our scheme, maxcwnd = 8, Scenario B 

The above-mentioned extreme unfairness not only exists in wired-
cum-wireless ad hoc environments, but also exists among TCP 
flows in pure ad hoc environments. Figure 15 shows a pure ad hoc 
scenario. Five nodes evenly spaced with 200 meters away from 
each other. One TCP flow (TCP1) is a two-hop connection from 
node 5 to node 3, whereas another TCP flow (TCP2) is from node 
1 to node 2. Xu and Saadawi [3] have shown that in this scenario 
once the one-hop connection starts, the two-hop connection is 
completely forced down and even cannot get a chance to restart. 
In our simulation, DSR [9] is used as the routing protocol. The 
two-hop connection starts at 0 second, whereas the one-hop 
connection starts at 10.0 second.  

           
 
  node1      node 2        node 3       node 4     node 5

 
Figure 15. A pure ad hoc scenario with extreme unfairness 

From Figure 16 we can see that just as [3] has stated, the one-hop 
TCP flow completely force down the two-hop TCP connection. 
The TCP1 flow does not receive any new acknowledgement after 
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31.5 second. Figure 17 shows the results obtained by using our 
scheme, now both flows progress roughly smooth and co-exist 
well. The extreme unfairness once again was eliminated by our 
scheme.  
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Figure 16. Ack Sequence Progress, normal FIFO scheme 
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Figure 17. Ack Sequence Progress, our scheme 

One thing to note is that in the simulation results the aggregate 
goodput experiences moderate degradation by using our scheme 
compared with using normal FIFO scheme. However, the 
degradation is acceptable considering the fact that it completely 
eliminates the extreme unfairness and ensures a sustainable 
throughput for every TCP connection. Moreover, in situations 
with extreme unfairness, the term of aggregate goodput is 
misleading because it is almost completely contributed by one or 
few connections with all other TCP connections starved out. 
Considering the situations where ad hoc networks are deployed, 
such as battlefield and disaster rescue, everyone could foresee the 
implications of severe unfairness. No one will have the desire to 
implement an ad hoc network if it even cannot ensure every 
connection a sustainable throughput, let alone fair share, when all 
links are in good states. 

4. ANALYSIS AND DISCUSSIONS 
The severe unfairness among TCP flows in IEEE802.11-based 
wireless ad hoc networks is the result of joint interactions of TCP, 
the FIFO work-conserving scheduling scheme, and the 
IEEE802.11 MAC protocol. First, TCP would send packets back-
to-back when congestion window allows. Moreover, TCP traffic 
is self-clocking, i.e. the faster the acknowledgement comes back, 
the faster the data packet is sent out. Second, IEEE802.11 
protocol always favors the node that is successful in the latest 
contention and leaves the failed nodes in exponential backoff. 
Lastly, work-conserving scheduling helps the last successful node 

to occupy the channel persistently by always providing packets in 
time. In fact, as long as normal work-conserving scheduling is 
used with IEEE802.11 MAC protocol, even if other traffic types 
instead of TCP run on ad hoc networks, the unfairness problem 
will exist. From a different perspective, the packet generation 
interval of CBR traffic plays a similar role to some extent as the 
delay we added in scheduling. That is the reason why using work-
conserving scheduling with CBR traffic usually does not show 
clear unfairness. However, once the CBR load is high, i.e. the 
packet generation interval is small enough, the unfairness will be 
shown clearly as well. Therefore, just as [3] has pointed out, TCP 
just exacerbates the unfairness compared with other traffic types. 
By adding extra adaptive delay in scheduling, our scheme 
successfully eliminates the severe unfairness among TCP flows 
spanning multihop wireless and wired networks. The heuristics 
behind this design is that by introducing extra adaptive delay we 
want to only penalize those aggressive nodes to some extent, 
which grab the channel persistently, and help nodes that fail 
medium contention consecutively to enjoy the resource. The 
faster the node sends out packets, the longer the delay is inserted; 
the slower the node sends out packets, the shorter the delay is 
inserted, or even no delay is inserted. 
As reported in [4], there is fundamental difference between TCP 
parameter tuning in wireless ad hoc networks with wired 
connection and in pure ad hoc scenarios. In pure ad hoc networks, 
large congestion window usually does not increase the throughput 
but worsen fairness. However, for TCP connections spanning both 
wired and wireless ad hoc domains, a small congestion window 
usually causes unacceptably low throughput. Using our scheme, 
large congestion window is no more a threat to fairness; on the 
contrary, it contributes to the satisfactory throughput. 
We could foresee that in scenarios where there is only one TCP 
connection in the network, or each TCP connection always run in 
disjoint areas without contentions, our scheme would no doubt 
lead to unnecessary throughput loss. However, we argue that 
those cases are rare and unrealistic in a foreseeable practical 
wireless ad hoc network. 

5. RELATED WORK 
Several researchers have studied TCP fairness in multihop 
wireless networks. Tang and Gerla [10] investigated the issue of 
fair sharing of MAC among TCP flows in wireless ad hoc 
networks and a yield time scheme is proposed to improve fairness 
by introducing a larger yield time. However, larger yield time for 
every node will even penalize the node that used the channel less 
than its fair share, only because it is the node that used the 
channel last. Xu Kaixin et al [4] identified the unfairness problem 
when TCP spans both wired and wireless ad hoc networks, and 
they give valuable insights into TCP behavior over this type of 
environment. Xu and Saadawi [3] showed that hidden and 
exposed terminal problems, large sensing and interfering ranges 
are the main reasons of unfairness among TCP flows over 
IEEE802.11 MAC protocol. 
To address fairness at MAC layer, several fair scheduling 
schemes have been proposed for general shared wireless channel 
environment. For example, Vaidya et al [11] presented a 
distributed fair scheduling algorithm for wireless LAN that 
emulates Self-Clocked Fair Queuing in a distributed manner and 
chooses a backoff interval that is proportional to the finish tag of 
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the packet to be transmitted, while Nandagopal et al [12] 
proposed a general analytical framework that can translate any 
given fairness requirement into a matching backoff scheme. These 
schemes address the fairness of MAC in general whereas here we 
try to eliminate the extreme unfairness among TCP flows in a 
broad class of ad hoc network environments. On the other hand, 
compared with the scheme proposed in this paper, these schemes 
are backoff-based solutions, i.e. they try to achieve fairness by 
modifying the backoff policy of MAC protocol. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we propose a scheme, which successfully eliminates 
the severe unfairness that TCP will likely face when the 
connections cross wired and IEEE802.11-based wireless ad hoc 
networks. Our work reveals that the work-conserving scheduling 
may amplify the adverse effects caused by interactions between 
TCP and the IEEE802.11 MAC protocol. The simulation results 
show that our scheme improves the fairness among TCP 
connections greatly and ensures every connection a sustainable 
throughput at the cost of moderate throughput degradation. Our 
future work includes testing of this scheme in scenarios with more 
sources contending for service from the base station. For proper 
parameterization, we will also use mathematics methods to 
analyze this scheme. 
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