Cutting the Cord: A Robust Wireless Facilities Network for Data Centers

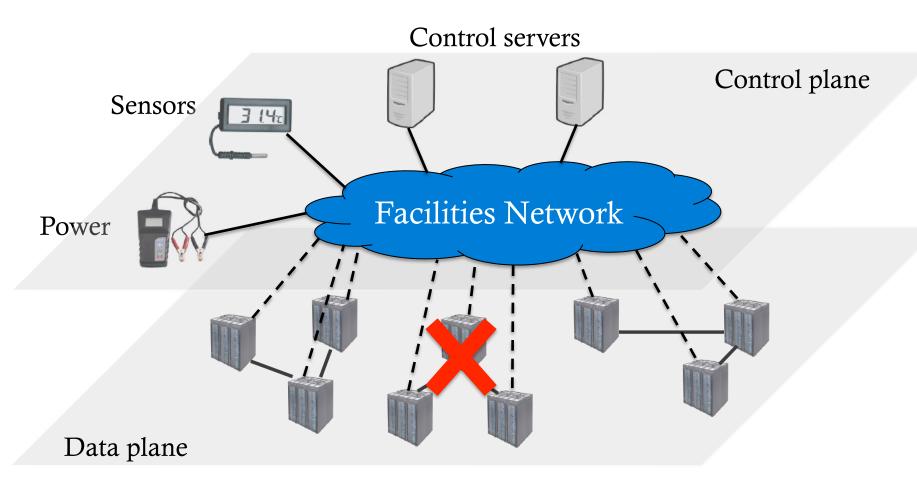
Yibo Zhu, Xia Zhou[§], Zengbin Zhang, Lin Zhou, Amin Vahdat[†], Ben Y. Zhao and Haitao Zheng

U.C. Santa Barbara, §Dartmouth College, †U.C. San Diego & Google yibo@cs.ucsb.edu

Data Center Networks (DCN)

 DCN: key infrastructures for mobile and big data applications

- Large and dynamic \rightarrow management complexity
 - Highly dynamic data traffic
 - Shared by changing customers
 - Frequent failure, maintenance and upgrades


Beyond Data Plane

- Various control messages
 - Flow scheduling
 - Monitoring environment & power
 - Virtual machine imaging and configuration
 - Failure recovery
 - Bootstrap upgraded devices
- Must deliver timely and reliable
 - Not interfered by congested data traffic
 - Even when data plane not working

Upgrade ~100 servers per day on average

A Facilities Network

Proposed DCN architecture

Requirements of Facilities Network

Performance

Low bandwidth

• 1Gbps enough

Bounded delay¹

- One packet message <10ms
- 1MB Large message <500ms

¹Devoflow, SIGCOMM'11

Fault isolation

Not fate-sharing

• Ideally physically separated

Robustness

Always connected

Even when large portions down

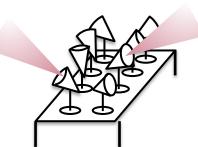
Must remain working even racks taken off

Option: Wired Facilities Network

- Connect all devices using cables
 - In-band: share w/ data plane
 - Out-of-band

- Advantage: large capacity
- Challenges

 Out-of-band: high cost, wiring headache


- Poor fault isolation/robustness
 - Zero fault isolation for in-band
 - Even out-of-band interrupted by cable tray maintenance

Option: Wireless Facilities Network

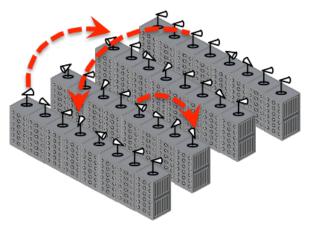
- Add radios to racks
 - WiFi (1.3Gbps), 60GHz (6.76Gbps)
- Enough bandwidth

Advantages

Cost: low (no additional switches/cables)

- Fault isolation: physically isolated from data plane

- Robustness: automatically reform links



• Challenge: delay from wireless interference

Choice of Wireless Technology

60GHz 3D Beamforming

Widely available

Well-understood

- Omni-directional
- Contend for channel

Large interference footprint

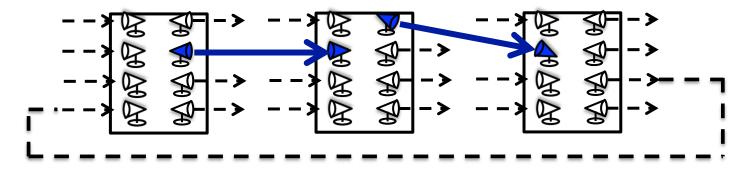
- Poor in dense DC
- Unpredictable delay

Recently available

Less-understood

- Highly directional
- Need coordination

Small interference footprint

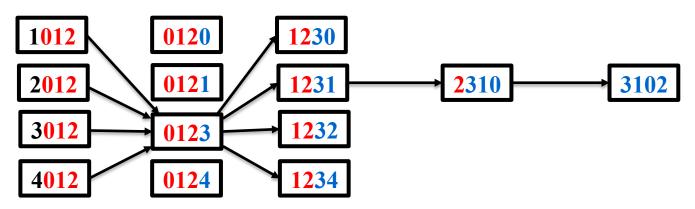

Good for dense DC

Outline

- Motivation
- System design
 - Angora: a 60GHz facilities network
 - Wireless overlay design
 - Minimizing link interference
 - Fault recovery
- Evaluation
- Conclusion

Angora: a 60GHz Overlay

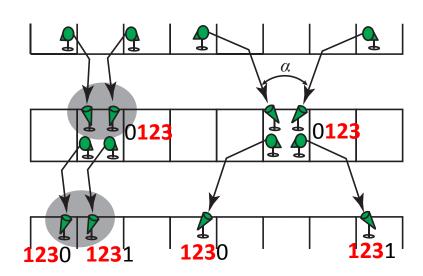
- Highly directional signal + limited radios per rack → limited connections per rack
- Antenna alignment → extra delay


- Angora: fixed topology overlay
 - Multi-hop → any-to-any connectivity
 - Fixed topology → no link coordination → no extra controllers, minimize delay

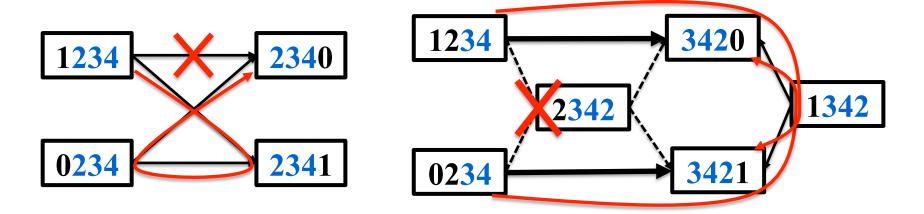
Structured Overlay Graph

- Key goal: minimize delay (hop count)
- The constraint: constant number of radios per rack → constant degree graph
- We choose Kautz graph
 - Smallest diameter given node degree and the number of nodes.
- Hop count: Kautz < Random¹ << Fat-tree
 - Wired networks prefer Fat-tree due to low wiring complexity

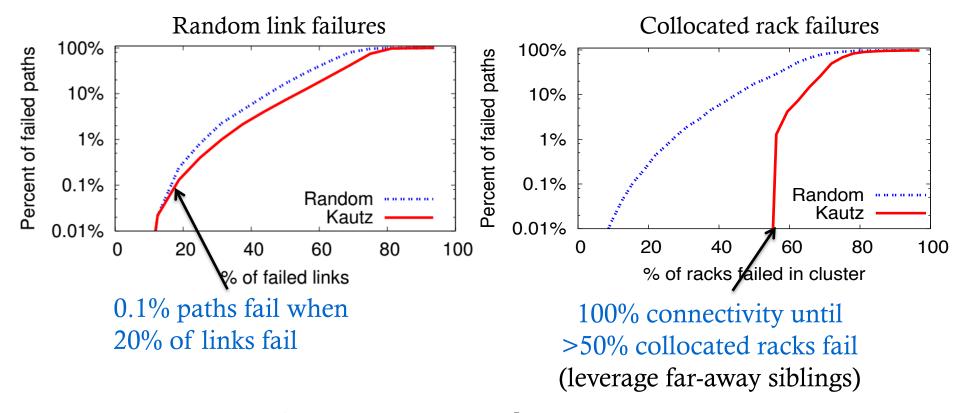
Kautz Graph


Simple digit-shift routing

- Graph diameter = length of IDs = $\sim \log_k(N)$
 - -N: # of nodes, k: node degree (4)
- Challenge: Kautz only supports specific N
 - We design an algorithm to handle arbitrary N


Node Naming and Interference

- Nodes naming affects interference
 - 60GHz interference: function of angular separation
- Goal: maximize angular separation between links
- Designed an optimal naming scheme
 - Achieved 14° angular separation in practice



Failure Recovery Algorithms

- Link failure \rightarrow remove a graph edge
 - May happen when radio fails, or signal blocked
 - Leverage Kautz structure to re-route the traffic
- Rack failure → remove a graph node
 - Similar deterministic algorithm

Failure Recovery Results

- Structural fault recovery → good robustness
- Deterministic algorithms → no extra coordinator

Outline

- Motivation
- System design
- Evaluation
 - Testbed
 - Simulation
- Conclusion

Testbed Validation

- Two testbeds
 - HXI: horn antennas
 - Wilocity: 2x8 arrays,
 affordable for multi-hop

HXI testbed Horn antenna

Wilocity testbed 2x8 array

- Single link performance
 - Measured per-second TCP throughput over one month
 - Average ~900Mbps (capped by 1Gbps NIC)
 - Standard variation <1% average throughput → as stable as a wired link

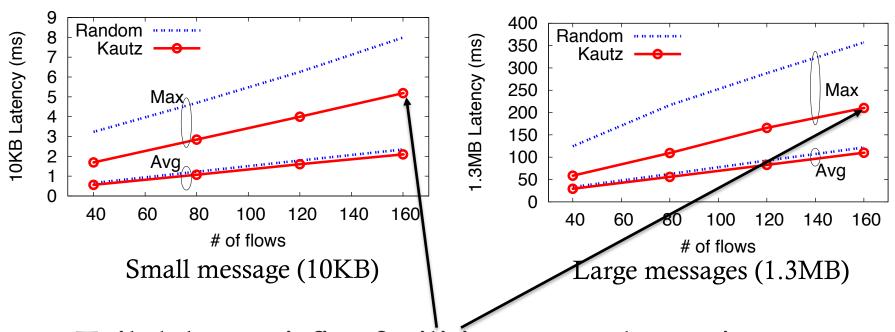
Testbed Validation (Multi-hop)

- Without interference
 - Throughput not affected
 - Latency scales with hops

Path Length	TCP Thpt ¹	10	10KB Latency		
2 hops	662Mbps		2.5ms		
3 hops	654Mbps		3.1ms		
4 hops	665Mbps		3.5ms		

Multi han nath narfarmanca

Multi-hop paths have low interference → high throughput and predictable latency.


- Different channels → no throughput loss
 - ∘ 802.11ad defines 3 channels → low self-interference
- Cross-path interference mitigated by node naming

Large-scale Simulation

- We implement Angora in NS-3
 - Antenna: horns and arrays
 - 3D beamforming signal reflection
 - 802.11ad PHY/MAC
 - Kautz overlay routing
 - Medium size (320~480 racks) DCN layouts
- Micro-benchmark: path hop count, concurrency, fault-tolerance
- End-to-end performance: single flow, Poisson flows, synchronized flows

End-to-end Performance

Worst case: synchronized flows

- Tail delay satisfies facilities network requirements
- Structural (Kautz) >> random at tails

Conclusion

- Motivation: build an orthogonal facilities network as a core tool for managing DCN.
- We propose Angora, a Kautz overlay built on 60GHz 3D beamforming links.
- Addressed challenges
 - Wireless interference
 - Robustness to failures
 - Incomplete Kautz graph

Thank you! Questions?