

Exploring Human Mobility with Multi-Source Data at Extremely Large Metropolitan Scales

Desheng Zhang & Tian He

University of Minnesota, USA

Jun Huang, Ye Li, Fan Zhang, Chengzhong Xu Shenzhen Institute of Advanced Technology, China

Outline

- Introduction
- Design
- Evaluation
- Application
- Conclusion

Human Mobility Patterns

- Mobile Networking
- Location Based Services
 - Real-time Navigation
 - Transit Services
 - Social Networking

Mobile Networking

Location Based Services

Real-Time Navigation

Transit Services

Social Networking

Human Location Tracking Devices

- GPS Devices
- Cellphones by Call Detail Records (CDR)
 - Cell Tower Levels
- Automatic Fare Collection System (AFC)
 - Station Levels: Subways, Buses, Taxicabs
- Massive Empirical Data Collection

Subway Station

Bus

Taxi

Empirical Mobility Data

- Empirical Data for Mobility Modeling
 - Large Scale
 - Fine Granularity
 - Long Collection Period
- Taxicab Passengers in Shenzhen

Human Mobility Models

- Legacy Mobility Models:
 - MobiCom'03: Obstacles based Mobility Model by Jardosh et al.
 - MobiCom'04: Weighted Waypoint Model by Hsu et al.
 - MobiCom'07: Mobility Modeling in Bus-based DTN: Zhang et al.
 - UbiComp'11: Mobility Modeling with Smartcards: Lathia et al.
 - KDD'11: Mobility in Social Networks: Cho et al.
 - MobiSys'12: Cellphone based Mobility Model: Isaacman et al.
 - MobiCom'13: Residence Time Prediction: Baumann et al.
 - MobiCom'13: Ballistic Model: Bogo et al.
- Models based on **Single-Source** Data
 - Cellphone
 - One Kind of Urban Transit
 - Taxicab, Subway or Bus

Common Drawback: Biased Sampling

• Using Residents in Single-Source Data as a Sample for ALL

7

Common Drawback: Biased Sampling

- Using Residents in Single-Source Data as a Sample for ALL
- Introducing a Bias against Residents not Involved

Models Based on Cellphone Data

- Use **Residents** with cellphone activities as a **Sample** for all
- Biased against Residents without cellphone activities

Models Based on Transit Data

- Use a type of Passengers (e.g., taxicab) as a sample
- Biased against Residents using other transit

Taxi Passengers

Bus Passengers

Subway Passengers

Private Cars

Visualizing Biased Sampling with Mobility Graph

- Vertex: a Urban Region
- Vertex Size: Number of Mobile Residents
- Edge: Mobility between a Pair of Regions
- Edge thickness: Mobility Volume

Mobility Graph based on Cellphone Data

Possible Solution: Multi-Source Data

- Quick Expansion of Urban Infrastructures
 - Enabling Multi-Source Data to address biased sampling
 - Integrating Transit Networks with Cellular networks

Contributions

- Mitigating biased sampling in single-source data by cross-referencing multi-source data
- Analyzing **spatial-temporal dynamics** of multi-source data to infer real-time mobility
- Designing the first **generic architecture** mPat for mobility modeling, separating low level data collection and high level service design
- Implementing mPat with extremely large-scale multi-source data capturing 10 million residents in Shenzhen
- Enabling an **inter-region mobility inference** with a 75% accuracy
- Developing a transit service based on inferred **inter-region mobility** to reduce 46% of passenger travel time

Outline

- Introduction
- Design
- Evaluation
- Application
- Conclusion

mPat Architecture

Data Feed Layer: Overview

- Data Feeding
- Data Managing
- Data Storing
- Data Cleaning
- Data Protecting

Data Feeding

- Close Collaboration
 - Shenzhen Government Agencies
- A Reliable Feeding Mechanism
 - Cellphones: CDRs for 10.4 Million Users
 - Smart Cards: Fare Transactions for 16 Million Users
 - Taxicabs: GPS for 14 Thousand Taxicabs
 - Buses: GPS for 10 Thousand Buses

Data Managing

- Hardware:
 - 11 Node Cluster with34 TB Storage
 - Node with 32 Cores and 32 GB RAM

- Hadoop Distributed File System (HDFS)
- Pig and Hive

Data Storing

Cellphone Dataset		
Collection Period	10/01/13-Now	
Number of Users	10,432,246	
Data Size	680 GB	
Record Number	434,546,754	
Format		
SIM ID	Date and Time	
Cell Tower ID	Activities	

Taxicab GPS Dataset		
Collection Period	01/01/12-Now	
Number of Taxis	14,453	
Data Size	1.7 TB	
Record Number	22,439,795,235	
Format		
Plate Mumber	Date and Time	
Status	GPS Coordinates	

Bus GPS Dataset		
Collection Period	01/01/13-Now	
Number of Vehicles	10,000	
Data Size	720 GB	
Record Number	9,195,565,798	
Format		
Plate Number	Date and Time	
Velocity	GPS Coordinates	

Smart Card for Subway & Bus		
Collection Period	07/01/11-Now	
Number of Cards	16,000,000	
Data Size	600 GB	
Record Number	6,212,660,742	
Format		
Card ID	Date and Time	
Device ID	Station Name	

Data Cleaning

- Errant Data in mPat
 - Duplicated Data
 - Data with Logical Errors
 - Missing Data
- 11% of Data Removed

Removing Errant and Duplicated GPS

Map Matching

Data Protecting: Privacy

• Anonymization:

- Anonymizing All Data
- Replacing IDs with Serial Numbers

- Processing Mobility Info Only
- Dropping Other Info

• Aggregation:

- Presenting Mobility in Aggregation
- Not Focusing on Individual Users

Mobility Abstraction Layer: Overview

- Trip Extraction
- Spatial and Temporal Characteristic Analysis
- Urban Region Partition
- Inter-Region Mobility Inference

Trip Extraction

- Cellphone User Trips
 - Obtaining trips by a continuous trace of cellphone towers associated CDRs for the same user
- Taxicab Passenger Trips
 - By finding pickup and related dropoff locations
- Bus Passenger Trips
 - By finding boarding and alighting bus stations
- Subway Passenger Trips
 - By finding entering and exiting metro stations
- Details in the paper

Trip Extraction

Characteristic Analysis

- Classifying All Trips
 - Cellphone Trips
 - Transit Trips
- Spatial Characteristic
 - Variety in Lengths

- Temporal Characteristic
 - Variety in Time Periods

20%

10%

Spatial Characteristic

- Trips from **Transit Data**
 - Trips between 1 km and 35 km
- Trips from Cellphone data
 - Trips with various lengths

Temporal Characteristic

- Captured Trips in the slot 7-8 AM in 14 different Mondays
 - Fewer Trips from Cellphone data
 - More Trips from Transit data

Empirical Insights

- Bias in **Transit** Data:
 - Capturing fewer short (<1km) or long (>35km) trips
 - Difficult to be mitigated
- Bias in Cellphone Data:
 - Capturing fewer trips in a given time slot
 - Possible to be mitigated
- Mitigating the Bias in Cellphone Data:
 - Urban trips are highly repeatable, e.g., daily commute
 - A traveling resident may use **cellphone before**
 - Accumulatively using historical data to capture residents

Cumulatively using Historical Data

- Captured Trips from Unique Residents in Accumulative Mondays
 - Cellphone Data are better

Urban Region Partition

• Utilizing 496 Shenzhen Urban Regions as a spatial partition

Mobility Graph

- Vertex: a Urban Region
- Vertex Size: Number of Mobile Residents
- Edge: Mobility between a Pair of Regions
- Edge thickness: Mobility Volume

Bus Passenger
Mobility Graph

Online Inference:

- Objective: inferring the real-time mobility among different **urban regions** by a **mobility graph G** for the current slot
- Aggregating individual mobility to obtain mobility volumes for every region pairs

Online Inference by Cellphone Data:

- 90% of urban residents have cellphones
- Infer $G = G^c + G^c$ in a slot τ
 - G^c for active cellphone users with activities in τ
 - $G^{\underline{c}}$ for inactive cellphone users without activities in τ

Key Challenge: $G^{\underline{c}}$ for inactive users is Unknown

Online Inference:

Solution: Infer $G^{\underline{c}}$ by **accumulatively** using historical data

Repeatable Trip:

Inactive users
may use cellphones
before for same trip

Design Issue: Accumulation

- When to Stop Accumulatively Using Historical Data?
 - One Day or One Week or One Month
- Avoiding Under or Overestimated
- Finding a Bound by another **Data Source** to stop the accumulation
- Using Mobility from Transit Data as a Lower Bound for Total Mobility

Online Inference:

Stop Accumulation, if G^c plus G^c covers G^t in terms of edge weights

Online Inference:

Using G^c plus G^c to approximate G for all interregion mobility

Outline

- Introduction
- Design
- Evaluation
- Application
- Conclusion

Evaluation Summary

- Comparison:
 - Radiation: Statistical Model without Real-Time Data
 - WHERE: Single-Source Model with Cellphone Data
- Metric: Mean Average Percent Error (MAPE)

$$\frac{100}{n} \sum_{i=1}^{n} \frac{|\bar{\mathbf{T}}_i - \mathbf{T}_i|}{\bar{\mathbf{T}}_i}$$

- Among $n=496\times496=246016$ region pairs, i.e., an OD pair
- ullet \mathbf{T}_i : Inferred Mobility in an OD pair i
- $\bar{\mathbf{T}}_i$: Real Mobility in an OD pair i (Ground Truth)

• Ground Truth:

- Obtained by a location updating dataset of 7 million cellphone users
- Logging locations of all users in every 15 mins even without activities
- Did not use in analysis since it cannot generalize to their cities, and need extra support in terms of software, hardware, and policies

Accuracy on different levels

Street Levels

Impact of slot length

Impact of Historical Data

mPat-S: using all historical cellphone data without analyzing the correlation with transit data

Outline

- Introduction
- Design
- Evaluation
- Application
- Conclusion

Inter Region Transit

- Based on mPat, finding urban region pairs with
 - High human mobility (Cellphone Data)
 - Low public transit mobility (**Transit Data**)
 - Indicating Inadequate Transit Service

• Providing **non-stop express** inter region transit (IRT) services between these region pairs

Real World Implementation

- Implementing between two urban regions
- Using 3 taxis as IRT Vehicles to deliver 12 volunteers
- Logging **Travel Time** for 30 days

Experiment Results

- Comparing IRT with walking and taking regular bus
- Quantifying **speed difference** between taxicabs and buses with a factor *v*

Conclusion

- Design an architecture **mPat** for the analysis and inference of the human mobility with a 75% inference accuracy
- Two key insights
 - models based on **single-source data** introduce **biases**, which can be mitigated by **multi-source data**
 - multi-source data can be used for **cross-referencing** to increase the performance

Thanks