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Human Mobility Patterns

• Mobile Networking

• Location Based Services
• Real-time Navigation

• Transit Services

• Social Networking 

Transit Services
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Human Location Tracking Devices
• GPS Devices

• Cellphones by Call Detail Records (CDR)

• Cell Tower Levels

• Automatic Fare Collection System (AFC)

• Station Levels: Subways, Buses, Taxicabs

• Massive Empirical Data Collection
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Empirical Mobility Data

• Empirical Data for Mobility Modeling

• Large Scale

• Fine Granularity

• Long Collection Period

• Taxicab Passengers in Shenzhen
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Human Mobility Models

• Legacy Mobility Models:

• MobiCom’03: Obstacles based Mobility Model by Jardosh et al.

• MobiCom’04: Weighted Waypoint Model by Hsu et al.

• MobiCom’07: Mobility Modeling in Bus-based DTN: Zhang et al.

• UbiComp’11: Mobility Modeling with Smartcards: Lathia et al.

• KDD’11: Mobility in Social Networks: Cho et al.

• MobiSys’12: Cellphone based Mobility Model: Isaacman et al.

• MobiCom’13: Residence Time Prediction: Baumann et al.

• MobiCom’13: Ballistic Model: Bogo et al.

• Models based on Single-Source Data
• Cellphone

• One Kind of Urban Transit
• Taxicab, Subway or Bus 6



• Using Residents in Single-Source Data as a Sample for ALL
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Common Drawback: Biased Sampling 

• Using Residents in Single-Source Data as a Sample for ALL

• Introducing a Bias against Residents not Involved
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Models Based on Cellphone Data

• Use Residents with cellphone activities as a Sample for all 

• Biased against Residents without cellphone activities

9SampleBiased 



Models Based on Transit Data

• Use a type of Passengers (e.g., taxicab) as a sample

• Biased against Residents using other transit
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Visualizing Biased Sampling with Mobility Graph

• Vertex: a Urban Region 

• Vertex Size: Number of Mobile Residents

• Edge: Mobility between a Pair of Regions

• Edge thickness: Mobility Volume
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Mobility Graph based on Cellphone Data
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Possible Solution: Multi-Source Data 
• Quick Expansion of Urban Infrastructures

• Enabling Multi-Source Data to address biased sampling

• Integrating Transit Networks with Cellular networks 
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Contributions
• Mitigating biased sampling in single-source data by cross-

referencing multi-source data 

• Analyzing spatial-temporal dynamics of multi-source data to 
infer real-time mobility

• Designing the first generic architecture mPat for mobility 
modeling, separating low level data collection and high level 
service design   

• Implementing mPat with extremely large-scale multi-source data
capturing 10 million residents in Shenzhen 

• Enabling an inter-region mobility inference with a 75% 
accuracy

• Developing a transit service based on inferred inter-region 
mobility to reduce 46% of passenger travel time

15



Outline

• Introduction

• Design

• Evaluation

• Application

• Conclusion

16



17

Urban Infrastructures (Taxicabs, Buses, Subway, Cellular Networks)

Real-Time 

Data Feed 

Layer

Taxicab 

Data Feed

Bus 

Data Feed

Subway 

Data Feed

Cellular 

Data Feed

Mobility 

Abstraction 

Layer

Application

Design 

Layer

Wi-Fi AP 

Deployment

Cell Tower 

Depolyment

Inter-

Region 

Transit

Ad hoc 

Networking

mPat Architecture

Mobility Abstraction



Data Feed Layer: Overview

• Data Feeding

• Data Managing

• Data Storing

• Data Cleaning

• Data Protecting
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• Close Collaboration

• Shenzhen Government Agencies

• A Reliable Feeding Mechanism

• Cellphones: CDRs for 10.4 Million Users 

• Smart Cards: Fare Transactions for 16 Million Users

• Taxicabs: GPS for 14 Thousand Taxicabs 

• Buses: GPS for 10 Thousand Buses
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• Hardware:

• 11 Node Cluster with 
34 TB Storage

• Node with 32 Cores 
and 32 GB RAM
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• Software: 

• Hadoop Distributed File 
System (HDFS) 

• Pig and Hive

Cluster in Shenzhen

Data Managing
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Data Storing



Data Cleaning 

• Errant Data in mPat

• Duplicated Data

• Data with Logical Errors 

• Missing Data

• 11% of Data Removed
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Data Protecting: Privacy

• Anonymization: 
• Anonymizing All Data 

• Replacing IDs with Serial Numbers

• Minimal Exposure:
• Processing Mobility Info Only 

• Dropping Other Info

• Aggregation:
• Presenting Mobility in Aggregation

• Not Focusing on Individual Users
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• Trip Extraction

• Spatial and Temporal Characteristic Analysis 

• Urban Region Partition

• Inter-Region Mobility Inference 
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Mobility Abstraction Layer: Overview 



Trip Extraction
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• Cellphone User Trips

• Obtaining trips by a continuous trace of cellphone towers 
associated CDRs for the same user

• Taxicab Passenger Trips

• By finding pickup and related dropoff locations

• Bus Passenger Trips

• By finding boarding and alighting bus stations

• Subway Passenger Trips

• By finding entering and exiting metro stations

• Details in the paper



Trip Extraction
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Characteristic Analysis

•Classifying All Trips
• Cellphone Trips

• Transit Trips

•Spatial Characteristic
• Variety in Lengths

• Temporal Characteristic
• Variety in Time Periods

270%
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Spatial Characteristic

• Trips from Transit Data

• Trips between 1 km and 35 km
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• Trips from Cellphone data 

• Trips with various lengths



Temporal Characteristic
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• Captured Trips in the slot 7-8 AM in 14 different Mondays

• Fewer Trips from Cellphone data

• More Trips from Transit data



Empirical Insights
• Bias in Transit Data:

• Capturing fewer short (<1km) or long (>35km) trips

• Difficult to be mitigated

• Bias in Cellphone Data:

• Capturing fewer trips in a given time slot

• Possible to be mitigated

• Mitigating the Bias in Cellphone Data: 

• Urban trips are highly repeatable, e.g., daily commute

• A traveling resident may use cellphone before

• Accumulatively using historical data to capture residents
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Cumulatively using Historical Data 

• Captured Trips from Unique Residents in Accumulative 
Mondays

• Cellphone Data are better
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• Utilizing 496 Shenzhen Urban Regions as a spatial partition
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• Mobility Graph

• Vertex: a Urban Region 

• Vertex Size: Number of Mobile Residents

• Edge: Mobility between a Pair of Regions

• Edge thickness: Mobility Volume



Online Inference:

• Objective: inferring the real-time mobility among 
different urban regions by a mobility graph G for the 
current slot

• Aggregating individual mobility to obtain mobility 
volumes for every region pairs

34A mobility graph G Urban Region Partition
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Online Inference by Cellphone Data:
• 90% of urban residents have cellphones

• Infer G = Gc+Gc in a slot τ

• Gc for active cellphone users with activities in τ

• Gc for inactive cellphone users without activities in τ
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Online Inference:
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Design Issue: Accumulation

• When to Stop Accumulatively Using 
Historical Data?

• One Day or One Week or One Month

• Avoiding Under or Overestimated

• Finding a Bound by another Data 
Source to stop the accumulation

• Using Mobility from Transit Data as 
a Lower Bound for Total Mobility 
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Gc
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Gc
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Evaluation Summary
• Comparison: 

• Radiation: Statistical Model without Real-Time Data

• WHERE: Single-Source Model with Cellphone Data

• Metric: Mean Average Percent Error (MAPE)

• Among                                               region pairs, i.e., an OD pair

• : Inferred Mobility in an OD pair 

• : Real Mobility in an OD pair (Ground Truth)

• Ground Truth:
• Obtained by a location updating dataset of 7 million cellphone users

• Logging locations of all users in every 15 mins even without activities

• Did not use in analysis since it cannot generalize to their cities, and 
need extra support in terms of software, hardware, and policies
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Accuracy on different levels
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Impact of slot length
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Impact of Historical Data
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Accuracy Running Time

mPat-S: using all historical cellphone data 

without analyzing the correlation with transit data
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Inter Region Transit

• Based on mPat, finding urban region pairs with

• High human mobility (Cellphone Data)

• Low public transit mobility (Transit Data)

• Indicating Inadequate Transit Service 

• Providing non-stop express inter region transit (IRT) 
services between these region pairs
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Real World Implementation
• Implementing between two urban regions

• Using 3 taxis as IRT Vehicles to deliver 12 volunteers

• Logging Travel Time for 30 days
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Experiment Results
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• Comparing IRT with walking and taking regular bus

• Quantifying speed difference between taxicabs and 
buses with a factor v



Conclusion

• Design an architecture mPat for the analysis and inference 
of the human mobility with a 75% inference accuracy

• Two key insights 

• models based on single-source data introduce biases, 
which can be mitigated by multi-source data 

• multi-source data can be used for cross-referencing to 
increase the performance
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