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1. Data Traffic is  
Bursty and  Asynchronous  

 
1960’s 
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The Problem with  

•  You cannot predict exactly when they will 
demand access 

•  You cannot predict how much they will 
demand 

•  Most of the time they do not need access 
•  When they ask for it, they want immediate 

access!! 
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Conflict Resolution 
of Simultaneous Demands 

•  Queueing: 
•  One gets served 
•  All others wait 

•  Splitting: 
•  Each gets a piece of the resource 

•  Blocking: 
•  One gets served 
•  All others are refused 

•  Smashing: 
•  Nobody gets served ! 

A queueing system is 
a perfect resource 
sharing mechanism 

It serves whatever 
work has arrived 
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•  Most queueing systems consider that the 
“server” can only work at the rate of 1 sec/sec 

How Fast Can You Serve? 
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•  Most queueing systems consider that the 
“server” can only work at the rate of 1 sec/sec 

Arrivals/sec 

T = Response Time 

       (sec) X = Avg Svc  
Time    

_ 

How Fast Can You Serve? 
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•  Most queueing systems consider that the 
“server” can only work at the rate of 1 sec/sec 

Arrivals/sec 

T = Response Time 

File bits / 1 C bits/sec Data Channel 

       (sec) X = Avg Svc  
Time    

_ 
•  Now replace humans with data technology 

X = 1/ C (sec) 

How Fast Can You Serve? 
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The Basic M/M/1 Equation 

= 
- 1 ρ	


 / ρ	



= T 
- 1 ρ	


x 
_ 

/ 1 = Avg No. of bits/msg 
C = Capacity (bits/sec) 

1 / C  (sec) x 
_ 

= 
ρ   	

 C / = x 

_ 
= 

λ	

 = Arrival rate (msg/sec) 

0

Response 
 Time 

T 

ρ	



Now let’s 
scale it up! 

Cλ	



T = Response Time 
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2. Economy of Scale 
 

1960’s 
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C λ	


/ 1 = bits/msg 

T = Response Time 

Compare Two Systems 

2 
Double the Throughput Double the Capacity 

2 

C λ	


/ 1 = bits/msg 
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The Economy of Scale 

•  If you scale up throughput and capacity by 
some factor, 

         then you reduce  response time by that 
     same factor. 

•  If you scale capacity more slowly than 
throughput while holding response time 
constant,  
  then efficiency will increase  

 (and can approach 100%).  

•  If fact, you can improve all three! 
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Key Tradeoff: 
Response Time, Throughput, Efficiency 

Constant Response Time 
Throughput Increasing 
Efficiency Improving 

1 = Response 
      Time, T 

10 

2 
3 
4 

Response Time Improving 
Throughput Increasing 
Efficiency Improving 

Response Time Improving, 
Throughput Increasing 

 Constant Efficiency 
 

ρ =  	

 T 
1 +  T λ	



λ	



Efficiency  % 

Throughput 
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80 
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20 

0 

ρ   	



λ	



= 
1 - ρ	



 / ρ	


T λ	
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Theorem:  The optimum value of N which 
minimizes       the mean response 
time through the switch is: 

    N=1 

Comparing Architectures 

1 
2 
3 

N 

C/N bits/sec 
C/N bits/sec 

C/N bits/sec 

C/N bits/sec 
.	

.	


.	



/ N 

.	

.	



.	



/ N 

/ N 

/ N 

Dedicated 
Resources  

1 
2 
3 

N 

C/N bits/sec 
C/N bits/sec 

C/N bits/sec 

C/N bits/sec 
.	

.	


.	



/ 

Shared Resources  

What is the optimum number of channels  
to minimize the mean response time? 

1 C bits/sec / 

LARGE 
Shared Resources  

Kleinrock, L., "Information 
Flow in Large 

Communication Nets", Ph.D. 
Thesis Proposal, 

Massachusetts Institute of 
Technology, May, 1961.  
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Theorem:  The optimum value of N which minimizes 
      the mean response time through the switch is: 

    N=1 

Comparing Architectures 

1 
2 
3 

N 

C/N bits/sec 
C/N bits/sec 

C/N bits/sec 

C/N bits/sec 
.	
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.	



/ N 

/ N 

/ N 

Dedicated 
Resources  
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C/N bits/sec 
C/N bits/sec 

C/N bits/sec 

C/N bits/sec 
.	

.	


.	



/ 

Shared Resources  

1 C bits/sec / 

LARGE 
Shared Resources  

1 
2 
3 

N 

C bits/sec 
C bits/sec 

C bits/sec 

C bits/sec 
.	

.	


.	



/ 

.	

.	



.	



/ 

/ 

/ 

1 
2 
3 

N 

C bits/sec 
C bits/sec 

C bits/sec 

C bits/sec 
.	

.	


.	

 1 NC bits/sec N/ N/ 

Scale throughput and capacity by a factor of N 

Kleinrock, L., "Information 
Flow in Large 

Communication Nets", Ph.D. 
Thesis Proposal, 

Massachusetts Institute of 
Technology, May, 1961.  
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3. Data Networks 
 

1960’s 
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Average network delay T = 

= Network throughput (Msg/sec) 
T = Average delay for channel i i 

i 

T 

T   = 
λ i Σ	

 γ	

 Ti 

i 

Networks of Arbitrary Topology 

= Traffic on channel i (Msg/sec) 
i 

λ	


Key equation for 
network delay. 

Kleinrock, L., "Message Delay in Communication Nets with 
Storage” (Ph.D. thesis, MIT, December 1962) 

And it is EXACT!! 
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Proof 

N _
Σ	

 Ni _

 = 

_
T N  = Little’s Result for the full network 

λ i Ti  = Little’s Result for each channel Ni _

T  = λ i Ti Σ	

 T   = 
λ i Σ	

 γ	

 Ti 

i 

i 

T 
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The Underlying Principles 

•  Resource Sharing (demand access) 
•  Only assign a resource to data that is present 
•  Examples are: 

•  Message switching 
•  Packet switching 
•  Polling 
•  ATDM 

•  Economy of Scale in Networks 
•  Bigger is better 

•  Distributed control 
•  It is efficient, stable, robust, fault-tolerant and 

WORKS! 
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Economy of Scale in Networks: 
Cost 

Cost 

Throughput 0 

Locus of  
Network Designs 

Small 
Net Large 

Net 
Slope = $/Kbps 

Slope = $/Kbps 

That is, build 
the largest 
net possible 



© Leonard Kleinrock 2014 

4. Finite Population Models 
 

Late 1960’s 
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Finite Population Models  

1 

2 

3 

M 

.	

.	

.	


C 

System 
of 

Queues 

T 
Thinking Requesting Service 

Service Box 
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1/λ	

 = Average think time per thinking job 
= Rate of job requests/thinking job λ	



T    =  Average Response time in “Service Box”  

M   =  Number of jobs (population size) 

Input rate of jobs to system =  M λ	


1/λ	



1/λ	

 + T 

Output rate of jobs from system =     C (1-p0) v 
CT =  M 

v (1-p0) 
_   

λ	


v C 

/ 1 =  Avg No. of opns/job (1/  C sec) v 

Finite Population Models  

+ T τ	

 = Cycle Time =  1/λ	
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M 

CT v 

1 

CT =  M 
v (1-p0) 

_   
λ	



v C 
1 

Finite Population Models  
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1 

Deterministic Model 

1 1 1 2 2 2 2 3 3 3 3 5 5 5 5 4 4 4 4 6 6 6 6 

τ	



v 1/  C Time  

τ	



1/λ	



1 

1 
1 

Suppose each job takes exactly        sec thinking  1/λ	



Suppose each job needs exactly          sec of service  1/µC 

7 
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1 1 1 1 2 2 2 2 3 3 3 3 5 5 5 5 4 4 4 4 6 6 6 6 

v 1/  C Time  1/λ	



1 

1 

1 7 7 7 3 

τ	



8 8 8 

Deterministic Model 

Now add one more job! And another job! 
7 8 

Suppose each job takes exactly        sec thinking  1/λ	



Suppose each job needs exactly          sec of service  1/µC 
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The “Saturation” Point 
•  Looks like we just filled the system with 6 

carefully placed deterministic jobs. 
•  In general, without interference of jobs, for 

this deterministic system, we could fit 
exactly   1/µC 1/λ	

+ 

1/µC 
•  Let’s define this number as the saturation 

number, M* 

M* =  = 
µC λ	

 + 

λ	



Thus we can fit M* jobs in and 
they don’t see each other 

The first M* jobs look 
just like 1 job 

L. Kleinrock, "Certain Analytic Results for Time-Shared 
Processors," in Proceedings of the International Federation 
for Information Processing Congress, Edinburg, Scotland, 
August 1968, p. d119–d125.  
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The Deterministic Profile 

Deterministic profile 

M M* 

CT v 

1 

1 

None of these first 
M* see each other 

Each job beyond  
M* interferes totally 
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5. Flow Control and “Power” 
 
 

1970’s 
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•  Routing Procedures: 
•  Easy to design 
•  Hard to analyze (dynamic) 

•  Flow Control: 
•  Hard to design 
•  Outrageously difficult to analyze 
•  Absolutely essential 

• Guaranteed to  
GET you! 

Flow Control Issues 
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Input 

0 

CAPACITY Throughput 

Throughput 
Loss 

LOSS 

Flow Control in Networks 
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Output 

Input 

FREE-FLOW 

DEADLOCK 

CONSERVATIVE 

DYNAMIC 0 

0 

Flow Control in Networks 
Input Throughput CAPACITY 

0 

IDEAL 



© Leonard Kleinrock 2014 Network Cloud 

Input 

Response Time 

T 
Response Time 

0 

CAPACITY Throughput 

Throughput 
Loss 

LOSS 



© Leonard Kleinrock 2014 

Response Time vs Throughput 

0 
Throughput 

Response 
 Time 

(    ) 

T(   ) 

Do you want 
to operate 

here? 
Or here? 

Now let’s ask a good question: 
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0 
Throughput 

Response 
 Time 

(    ) 

T(   ) P  =   
T(   ) 

1/P 

* 

Max Power Point 

Kleinrock, L., "On Flow Control in Computer Networks", Conference Record, Proceedings 
of the International Conference on Communications, Vol. II, Toronto, Ontario, pp. 27.2.1 to 
27.2.5, June 1978.  

Let’s define a new metric of performance: 

POWER =  
Throughput 

Response Time 

Response Time vs Throughput 

dT(  )/d   = T(  )/ 

Power is 
 max when 

Line out of 
origin has 

minimum slope 
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0 
Throughput 

Response 
 Time 

(    ) 

T(   ) P  =   
T(   ) 

1/P 

We need a new metric of performance: 

POWER =  
Throughput 

Response Time 

Response Time vs Throughput 
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0 
Throughput 

Response 
 Time 

(    ) 

T(   ) 

* 

Max Power Point 

Kleinrock, L., "On Flow Control in Computer Networks", Conference Record, Proceedings 
of the International Conference on Communications, Vol. II, Toronto, Ontario, pp. 27.2.1 to 
27.2.5, June 1978.  

Response Time vs Throughput 

For M/M/1 
this gives 

 max Power at 
N* = 1 Why ? 

Let’s Dig Deeper on Understanding 
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Only 1 customer 
in the system 

T = Min 
Eff = Max 

Insight: 
Just keep the  

pipe full!  
T 

    Understand Your Own Results 
Use Your Intuition 
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•  Our intuition says put exactly one person 
in the queueing system  
•  This was from “deterministic” reasoning. 

•  We can’t actually do that in general 
•  BUT our earlier result said that we should 

adjust the system to achieve an average of 
one person in the queueing system, i.e.,  

    Understand Your Own Results 

_ At Max Power 
N* = 1  

for M/M/1 

_ 
Further: 

At Max Power we get 
•  ½ maximum thpt 
•  2x minimum delay 

for M/M/1 
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M/M/1 

M/G/1 

0 

T(   ) 

   Gee, that’s funny! 
What can we say for M/G/1 ? 

N*=1 
_ 

Kleinrock, L., "On Flow Control in Computer Networks", Conference Record, Proceedings 
of the International Conference on Communications, Vol. II, Toronto, Ontario, pp. 27.2.1 to 
27.2.5, June 1978.  
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A More General Power Definition 
POWER  =  

Throughput 

Response Time 
(               )r 

P  =   
T(   ) 

r 

_ At Max Power 
N* = r 

for M/M/1 
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6. Packet Radio 
 

1970’s 
Lots of great analysis and 
design, but the technology 
would not become available 

for two decades more 
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Slotted Aloha 

This looks like 
“negative 

resistance” 

Thus the 
system is 
unstable! 

L. Kleinrock and S. Lam, "Packet Switching in a Slotted Satellite 
Channel," in AFIPS Conference Proceedings, National Computer 

Conference, New York, June 1973, pp. 703–710.    
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CSMA 

L. Kleinrock and F. Tobagi, "Random Access Techniques for Data Transmission over Packet Switched Radio Channels," 
in AFIPS Conference Proceedings, National Computer Conference, Anaheim, California, May 1975, pp. 187–201.   
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CSMA 

On the 
airplane 

home 

L. Kleinrock and F. Tobagi, "Random Access Techniques for Data Transmission over Packet Switched Radio Channels," 
in AFIPS Conference Proceedings, National Computer Conference, Anaheim, California, May 1975, pp. 187–201.   

  Plus  
•  Hidden Terminals 
•  Busy Tone 
•  Reservation 
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Distributed Multi-Access 
•  Performance degradation from pure 

queueing due to: 
•  Unpredictable arrival times 
•  Unpredictable service times 

•  We also lose performance because we do 
not know who is on queue in a distributed 
environment 
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The Price for Forming the 
Queue 

Collisions 
Control 

Overhead Idle Capacity 

No Control 
(e.g. Aloha) 

Static Control 
(e.g. FDMA) 

Dynamic Control 
(e.g. Reservation) Yes No No 

Yes No No 

Yes No No 

L. Kleinrock, "Performance of Distributed Multi-Access Computer-Communication 
Systems," in Information Processing 77, Proceedings of IFIP Congress 77, Toronto, 
Canada, August 1977, pp. 547–552. 
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Giant Stepping  
in Packet Radio 
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Giant Stepping  
in Packet Radio 

•  Multihop 
•  Each hop covers distance R (Tx Radius)  
•  Total distance to cover is D  (D>>R) 
•  Big R, more interference, fewer hops 
•  Small R, less interference, more hops 
•  T(R) is mean response time per hop  
•        T=Total Delay = T(R)[D/R] 
•        Choose R=R* to minimize total delay 
•        dT(R)/dR = T(R)/R optimality condition 
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T(R) 

R 

dT(R)/dR = T/R 

R * 

Optimum 
Radius R* 

Kleinrock, L.,  "On Giant Stepping in Packet Radio 
Networks," UCLA, Packet Radio Temporary Note #5, Prt 

136, March 1975 
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7. A Generalization 
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This is the 3rd Time We Have 
Seen This Today! 

Is there a General 
Case Here? 

P  =   
T(   ) 

0 

Throughput 

Response Time 

T(   ) 

* 

Max Power 
Point 

Power 

γ	


γ	



γ	



γ*	

 γ	



T(R) 

RR*

Giant Stepping 

dT(R)/dR = T/R 
Response Time 

Optimum 
Radius R* 

0 

Locus of  
Network Designs 

0 Slope = Kbps/$ 

Small 
Net 

Slope = Kbps/$ 

Throughput 

0 
Cost 

0
 

Large 
Net 

Economy of Scale 
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Bad 

Good 

Slope = Bad/Good 

Maximize   Good 
Bad 

G0 

= 
Minimum 
slope line 

So operate at  
point where 
line out of 
origin has   
minimum 

slope 

The General Case 

Kleinrock, L.,  ”Optimizing the Ratio of 
Good/Bad” in preparation 
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8. Distributed Processing 
 

1980’s 
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The General Series/Parallel 
Processing Net 

Kleinrock, L., "On the Theory of Distributed Processing,” Proc of the Twenty-Second 
Annual Allerton Conference on Communication, Control and Computing, Urbana-

Champaign, October 1984, pp. 60–70.  

λ = λk Σ	


k=1 

m 

C = Ck Σ	


k=1 

m 

nk 

λ	

 λk	


Ck 
1 

Ck 
2 

Ck 
nk 

. . .  

λ1	


C1 
1 

C1 
2 

C1 
n1 

. . .  

λm	


Cm 

1 

Cm 
2 

Cm 
nm 

. . .  
. . .  

. . .  

. . .  

. . .  
T(k)

 T(k)
 T(k)

 

T 
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The Pure Single Node 
M/M/1 

/ 1 = Avg No. of opns/job 
C - 

= T 0 

1 

T   = 
λ k Σ	

 T(k)

 

k=1 

m 

nk 

C - 
= T(k) 

k k 

1 
nk 

λ	


C 
1 

. . .  

The General Series/Parallel  
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Ratio of General/Single Node 

Let’s look at some special cases: 

T    
  = 

T0    Σ	

k=1 

m 

nk 
ρ	

 /  k - (1 ρ 	

) k 

ρ	

 /  - (1 ρ 	

) 

ρk   	

 Ck / = nk k 

ρ   	

 C / = 
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The Pure Tandem 
•  m=1, n1=n,      1 =     ,  C1 = C/n 
 

λ  λ  

λ	


C/n 

1 

C/n 
2 

C/n 
n 

. . .  

T    
    =   n 

T0    
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The Pure Parallel System 
•  nk= 1,      k =    /m ,  Ck = C/m    for k=1,2,…,m 
 

λ  λ  

λ/m	


C/m 

λ/m	


C/m 

λ/m	


C/m 

. . .  

λ	



. . .  

λ  λ  

T    
    =   m 

T0    
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The Symmetric Series-Parallel 
System 

•  nk= n,      k =    /m ,  Ck = C/mn    for k=1,2,…,m 
 

λ  λ  

λ/m	


C/mn 

1 

C/mn 

2 

λ/m	


C/mn 

1 

C/mn 

2 
. .   

λ/m	


C/mn 

1 

C/mn 

2 

. . .  

. . .  

. . .  

. . .  

λ	


C/mn 

n 

C/mn 

n 

C/mn 

n 

. . .  
. . .  

. .   

. .   

T    
 = mn 

T0    



© Leonard Kleinrock 2014 

The General Series/Parallel 
System with Uniform Traffic 

λk  =  λ/m  

λ/m	


Ck 
1 

Ck 
2 

Ck 
nk 

. . .  

λ/m	


C1 
1 

C1 
2 

C1 
n1 

. . .  

λ/m	


Cm 

1 

Cm 
2 

Cm 
nm 

. . .  

. . .  

. . .  

. . .  

. . .  

λ	


k=1 

m 

Σ	

nk 
T    

 =  
T0    

Bigger 
and 

fewer is 
better 
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9. Latency/Bandwidth 
Tradeoff 

 
1990’s 
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from Kilobits 

 to Megabits 

 to Gigabits! 

Evolution, Revolution or Bump? 

The Latency/Bandwidth 
Tradeoff 
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How Fast is a Gigabit? 
•  A billion bits/sec 

is really fast! 
•  But  ... the 

speed of light 
isn’t! 
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C 

One 
Megabit 

File 

780 
1 

64 Kbit/sec 
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C 

One 
Megabit 

File 

1.5 Megabit/sec 

33 
1 
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C 

One 
Megabit 

File 

1 Gigabit/sec 

We seem to have 
bumped into the 

speed of light! 

or 

Something’s going 
“bump”  

in the light! 
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When Did We Hit the Bump? 

Define Critical Capacity to be the point where: 
  Queueing + Tx Time = Latency 

 

At some CRITICAL capacity! 

C 

T = Response Time 
Response Time = Queueing + Tx Time + Latency 

Kleinrock, L., "The Latency/Bandwidth Tradeoff In Gigabit Networks", IEEE 
Communications Magazine, April 1992, Vol.30, No.4, pp.36-40  
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•  Queueing + Tx Time = Latency 

•  C < Critical   Bandwidth Limited 

•   C > Critical Latency Limited 

The Latency-Bandwidth 
Tradeoff 
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0 0.2 0.4 0.6 0.8 1 

  

10 GBPS 

1 GBPS 

100 MBPS 

10 MBPS 

1 MBPS 

100 KBPS 

10 KBPS 

100 GBPS 

Load 

Critical 
Bandwidth 

Critical Bandwidth 
Queueing + Tx Time = Latency 

(1 MEGABIT FILES) 
(CROSS COUNTRY) 

Bandwidth Limited 

Latency Limited 
FILE SIZE = 1 MBIT 



© Leonard Kleinrock 2014 

C 

AT 1 GBPS 

20 Million Bits 
in the pipe! 
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Key System Parameter 
L L = Cable Length (kilometers) 

PD = 5L (microseconds) 
C = Bandwidth (megabits/sec) 
b = Packet Length (bits) 

a = Propag Delay/Pkt Tx Time 
= 5LC/b  (# packets in cable) 

1,000.00 1,000 5 5 

1,000.00 1,000 20,000 20,000 

10.0 1,000 5 .05 
LOCAL NET 
1 kilometer 

FIBER LINK 
Cross country 

SPEED  
MBPS 

PKT LNGTH 
BITS 

PROP DELAY 
MICROSEC 

LATENCY 
a 

WIRELESS NET 
1 kilometer 
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The Latency-Bandwidth 
Tradeoff 

C 

Kleinrock, L., "The Latency/Bandwidth Tradeoff In Gigabit Networks", IEEE 
Communications Magazine, April 1992, Vol.30, No.4, pp.36-40  

or       a = 1 

1 -  ρ C     = 
5L(1-    ) crit 

   b 

ρ 

C (Mbps), 
L (Km), 

   b (bits/msg) 
(msg/microsec) 

=     b / C =  Load 
where 
ρ λ 

λ 

a = Propag Delay/Pkt Tx Time 
= 5LC/b  (# packets in cable) 
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Latency vs Bandwidth 

1 Gbps 100 Mbps 

10 Gbps 

Bandwidth (C) 1 Mbit 

10 Mbit 100 Mbit 

Packet Length (b) 

10,000 1,000 100 
Km Km Km 

Cable Length (L) 

Bandwidth 
Ltd 

Latency 
Ltd 

USA 

LC = 4x10 
6 

20 Mbit 

a=1 

LC=10 5 

LC=10 6 

LC=10 7 
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Latency vs Bandwidth 

1 Gbps 100 Mbps 

10 Gbps 

1 Mbit 

10 Mbit 100 Mbit 

10,000 1,000 100 
Km Km Km 

LC=10 5 

LC=10 6 

LC=10 7 

0.5 5 .05 a = 5 LC/b 

0.5 5 50 a 

0 .5 .8 .9 .95 

a = 
1 

1 -  

 .9 

Bandwidth 
Ltd 

Latency 
Ltd 

  

a=10 

USA 

2 Mbit 
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Gigabit Networking 

•  Speed of Light is Too Slow: 
•  20,000 Microsec to cross USA 
•  20 Million bits in a Gigabit pipe 
•  Control signals suffer enormous delays 

•  Global Information is Costly: 

Fundamental Issues 

•   It takes: 
bandwidth, time,  processing,  storage. 

•   It will be: 
delayed, stale,  wrong,  incomplete. 



© Leonard Kleinrock 2014 

10. The Gur Intelligent 
Agent 

 
1990’s 
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1. Each Agent votes          or NO YES 

Adaptive Agents and  
The Gur Algorithm  

2. A fraction f votes  YES 
3. Using a function p(f) which is unknown to them, 

1 

p(f) 

f 
0.2 0.4 0.8 1.0 0.6 0 

0 

a referee gives (takes) $1 from each 
independently with probability p 

4. Go to step 1 and repeat! 
Agents 
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Can We Construct The Players 
to Seek the Optimum  

Behavior? 

Yes ! 
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Vote YES 

How Is It Done? 

Vote NO 

1 2 3 4 5 -5 -1 -3 -4 -2 

p p p p 

p p p p p 
p 

1-p 1-p 1-p 1-p 1-p 

1-p 1-p 1-p 1-p 1-p 

Punishment => Center seeking behavior 
Reward => Edge seeking behavior 

Design each player as a finite-state discrete-
time automaton with 2N states 

B. Tung and L. Kleinrock, "Distributed Control Methods," in Proceedings of the 2nd 
International Symposium on High Performance Distributed Computing, Spokane, 
Washington, July 21-23, 1993, pp. 206–215.  
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11. Optimal Update Times 
 

2000’s 
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Optimal Update Times for 
Out-of-Date Information 

 •  Problem: 
 When and how often should a user update a given piece 
of information as it goes further and further out-of-date? 

•  Assumptions: 
 There is a cost C>0 of updating a given piece of 
information 
 There is an expected value per unit time associated with 
having a piece of information that was updated t time 
units ago.  

•  This value is f(t). 
•  Question: 

 Given f(t) and C, When and how often should a user 
update a given piece of information? 

Ferguson, C. and Kleinrock, L., “Optimal Update Times for Out-of-Date 
Information,” in preparation 
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0 

0.2 

0.4 

0.6 

0.8 

1.0 

Average Value Gained 
per Unit Time 

0                1                2                3                4                5                6 

t  

 x 
t=0 

x 

f(t)dt  ∫ 

f(t) 

Value of Out-of-Date Information f(t) 

- C 

is maximum when 

= f(x) 

Why? 

x 
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Value Gained Over Multiple Updates 

t x 2x 

-C 

0 

0.2 

0.4 

0.6 

0.8 

1 

-C 

3x 4x 

-C -C 

f(t) 

-C 
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12. Peer-to-Peer File 
Systems 

 
2000’s 
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Peer-to-Peer File Networks 
•  Distributed file sharing network 
•  The service consumers are the service 

providers as well  
•  Files uniformly distributed in net  
•  Search using controlled flooding 
•  How many copies of a file should be 

stored? 
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Definitions 

•  λ =        λi   = total input rate per node 

•  ni = number of replicas of file i in system 

N 

i=1 
Σ	



•  M = number of nodes in the system 
•  N = number of unique files in the system 
•  K = per-node storage size in number of files 
•  λi = request rate for file i per node 

•  ni =  number of replicas of file i in the system 
•  How should select ni  ? 
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Minimum Search Distance 
τι (ni) = Average shortest distance from a 

 querying node to a replica of file i 	

 

M 
ni 

	

 	

τι (ni) = α log 	


N 

i=1 
Σ	

 λ i 

λ	


τ  = Avg search distance =                 τι (ni) 
                  

{ni} 
     

Minimize   τ   

ni  =            λ i 
λ	



KM    
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Further Results 

•   Each replica of file i serves  

            M      /ni  =          requests/sec 

•  Each node has K files, so the load on each 
node is λ requests/sec . Don’t play games. 

•  So each node has exactly the same load! 
•  If queueing delays are convex in node 

utilization, the average download time is 
minimized. 

λi 
λ	



K 

Given        ni  =            λ i 
λ	



KM    
Why shouldn’t I store only unpopular files? 

S. Tewari and L. Kleinrock, "On Fairness, Optimal Download Performance and 
Proportional Replication in Peer-to-Peer Networks," in Proceedings of IFIP 
Networking 2005, Waterloo, Canada, May 2005.    
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13. Guidelines for Research 
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My Five Golden Guidelines to 
Research 

1.  Conduct the 100-year test. 
2.  Don’t fall in love with your model.  
3.  Beware of mindless simulation. 
4.  Understand your own results. 
5.  Look for “Gee, that’s funny!” 
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Richard Hamming 
"Why do so few scientists make 
significant contributions and so 
many are forgotten in the long 
run?"  

Richard W. Hamming, “You and Your 
Research”,  March 7, 1986.  

“If you don't work on important 
problems, it's not likely that you'll 
do important work.”  
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1. The 100 Year Test 
•  Hamming once asked me,  

“What progress of today will be remembered 
1000 years from now ?” 

 
Let’s simplify it:  Will your work be 

remembered 100 years from today? 
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The 
 

 Real 
 World 

Mathematical 
Model of 

The Real World 

Solution to the 
Mathematical 

Model 

Approximation 

2. But Don’t Fall in Love With 
Your Model 



© Leonard Kleinrock 2014 

3. Beware of Mindless Simulation 
Ask the Obvious Questions 
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•  Take the time to think deeply about your 
results. 

•  Use deterministic or simple models to 
explain behavior 
•  e.g. why does “filling the pipe” make sense 

•  Think about upper and lower bounds 
•  Take limits to force behavior 
•  Look at extreme cases to check validity 

and intuition 

4. Understand Your Own Results 
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5. Look for “Gee, that’s funny!” 

•  Don’t ignore strange looking results 
•  Often that’s where the “gold” lies 

•  The greatest scientific discoveries 
are Not accompanied by “Eureka”, 
but most occur when someone 
mutters, “That’s interesting” 
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More on Modeling 
• Moving the frontier is tough (we mislead our students) 
• Once they move it, they will be able to repeat it again 
(students don’t believe us) 
• Teach your students to understand their results! 
• Generalization usually comes when you can see the 
simplicity of a solution 
• As Norbert Wiener said, “Every scientist must 
occasionally turn around and ask not merely “How can 
I solve this problem?” but, “Now that I have come to a 
result, what (other) problems have I solved?” 
• When a field gets too crowded, move your research 
vector slightly 
• Keep your interest in related areas, areas where 
something might happen. 
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Thank You 
www.lk.cs.ucla.edu 


