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PERFORMANCE AND BATTERY CAPACITY TRENDS
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= CPU performance increase
= Samsung® Galaxy S > S3: 5.9x

= Battery capacity increase
= Samsung® Galaxy S - S3: 1.4x
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= Enabled by advancements in low-power designs and power management techniques.
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INCREASING INTEGRATION OF ADVANCED FEATURE SETS 3{%’1\7%
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POWER AND THERMAL CHALLENGES: FIRST-CLASS DESIGN CONSTRAINTS A
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= Process-variability-aware power management
= Thermally aware power management

= Thermal management
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PROCESS-VARIABILITY-AWARE POWER
MANAGEMENT

Broadcom Proprietary and Confidential. © 2013 Broadcom Corporation. All rights reserved.



SEMICONDUCTOR PROCESS NODE EVOLUTION AND VARIABILITY
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= 130 nm in 2001 - 28 nm in 2013
= Driving force behind Moore’s Law
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= Limitations of fabrication process
= +/- 1 molecule makes a difference

Year of Production 2013

Process Technology Node (nm) 28

Gate Oxide Thichness (nm) 1.4 (n), 1.7 (p)

Gate Oxide Thickness (# of Si0O2 molecules) ( 2-3

% Vdd Variability 10%

% Vth Variability 42%

% Performance Variability /42%

% Total Power Variability \'51:/9/
Source: ITRS
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SEMICONDUCTOR DEVICE VARIABILITY 3@’!’3&
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= Higher number of non-nominal dice
= Larger magnitude of difference between nominal and non-nominal dice
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LEAKAGE POWER VARIABILITY OVER PROCESS NODES _g@’.‘;egy_
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= Similar trend but much smaller magnitude for dynamic power variability

= Process-variability-aware power management policies required
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ADAPTIVE VOLTAGE SCALING (AVS)

BROADCOM.
NS

= For same performance, different voltage
requirements for fast vs. typical vs. slow dice.

Voltage Versus Delay for LPL _ _
(Normalized to LPS TT, 1.2V, 25°'C) = AVS adjusts voltage to die type.
14 B AL
. \ \ — Voltage - No AVS \oltage - AVS
2 8 - -- -~ -- LALFR135C
p \ \ e 3 o > >
. 3 . | e LAUTTZEC % % 4‘—,7\)'\(06
: : — LAUsSLaC = = l e
s NN —— E I
g . : %
s RN No
| T ff
0 \\ | Silicon Process Silicon Process
0.8 =
0.400 0.900 1.400 1.200 2400
Delay (Normalized to LPS TT, 1.2V, 25°C)

= Reduces dynamic and leakage power of fast dice and nominal dice.

= Reduces power consumption variability between dice.

Broadcom Proprietary and Confidential. © 2013 Broadcom Corporation. All rights reserved.



CHALLENGE .

Power is no longer a number but a distribution.

Power models, estimates, and policies today are typically geared towards
typical/nominal dice.

One-size-fits-all power management policies are increasingly insufficient.

All aspects of power management need to be made process-variability-aware.
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THERMALLY AWARE POWER MANAGEMENT
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LEAKAGE POWER AND DYNAMIC POWER OVER PROCESS NODES _glicyl’l‘:\f_:gy_

= Leakage power increases exponentially every = Dynamic power per gate @ same frequency
technology generation. decreases every technology generation.
= Qverall device dynamic power increases.
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= Leakage power becoming a more dominant factor in total power dissipation.
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LEAKAGE POWER VERSUS TEMPERATURE 3{0}&3&

= Leakage power depends exponentially on = There is a positive feedback loop between
temperature. power and temperature.
= |t may account for 40%-50% of total power = Power T =>Temperature T =>Power T
dissipation.
30
£ g
N v
) — -Ei
2% 20 = k 5
O~ — o
S g £
— o] ﬁ
€ o 15 Q. \“‘- c
o + Q o
uz- ° S 5
o N £ c
P 10 a. =]
©

g E 3 mJ s F
2 . 2 9
& @
S

§ 0 | | | | | —Power —Temperature

25 45 65 85 105 125 ' '
Temperature (°C) Time (Seconds)

= Temperature is a very important factor to consider in the context of power.
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DVFS VERSUS CPU HOT-PLUG .

CPU Hot-plug

= Power the CPU cores on and off depending on
the computational requirements.

= Better for leakage power.

Dvnamic Voltage and Frequency Scaling (DVFS)

= Run at the lowest possible frequency and voltage to
meet the computational requirements.

= Dynamic power has a square dependence on voltage.

cPuo B CPU1 CPU1 Lkg Pwr CPUO g%
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CPUO Lkg Pwr
Frequency = F = CPUO Dyn Pwr Frequency = 2F

Power (W)
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Temp) Low Temp) Temp) High Temp)

= DVFS may be better suited for low/medium temperatures where dynamic power dominates.
= CPU hot-plug may be better suited for high temperatures where leakage power may dominate.
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CHALLENGE .

Leakage power is increasing as a fraction of total power dissipation at smaller
technology nodes.

Leakage power increases exponentially with temperature.

Power models, estimates, and policies today are typically temperature agnostic.

All aspects of power management need to be made temperature-aware.
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THERMAL MANAGEMENT
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SMARTPHONE POWER AND TEMPERATURE EVOLUTION 3{0}&3&

= SoC power dissipation for representative = Corresponding SoC silicon junction
heavy usage scenario (without thermal temperature (without thermal
management) management)
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MOBILE DEVICE THERMAL CONSTRAINTS 3{0}’!’3&

= Thermal limits are not changing.

= Phone skin temperature (front and rear) < ~40°C - 45°C

= Silicon die temperature < ~125°C (Discrete), ~105°C (PoP)
= DRAM temperature <~105°C

= eMMC temperature <~85°C

= Battery temperature during charging < ~45°C

= Battery temperature during discharging < ~60°C

= Active cooling mechanisms used in PCs/laptops are not feasible for mobile devices.
= Fans
= Heat sinks

= Mobile device form-factors are shrinking.
= Harder to dissipate heat

= Power density is increasing with shrinking process nodes.
= Hot spots
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MOBILE DEVICE THERMAL DESIGN 3{0}&3&

= Thermal Interface Materials (TIM)
= Thermal gap pad
= Better thermal conduction between components and EMI shield/chassis
= Through-thickness heat conduction

= Heat spreaders
= Distribute heat evenly and prevent hotspots.
= Made of graphite/graphene, copper, or aluminum.
= Provide lateral heat conduction.

Battery

Heat Spreaders

— Logic Board

= Thermal vias
= Conduct heat away from SoC to PCB ground plane.
= Distribute heat through the PCB.
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Need for thermal management for mobile devices Thorlvie 1 g lcricalhrno o

Source: Electronic Design
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THERMAL THROTTLING
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Thermal Policy 1

= Allow 3W power until 100°C (maximum limit).
= Throttle to 1W until 90°C.
= Average power = 2.3W.

Thermal Policy 2

Allow only 2.3W power above 90°C.
Device temperature reached = 95°C.
5°C thermal headroom compared to Policy 1.
Achieves smoother application performance.
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CHALLENGE .

With increasing integration of advanced functionality, mobile device power consumption is
rapidly increasing.
= Therefore, temperature is also rapidly increasing.

Thermal constraints are constant.

Temperature, even more so than power, is fast becoming a fundamental design bottleneck.

Ad hoc thermal throttling will significantly degrade performance.

= Smart thermal management algorithms are required that can effectively trade-off:
= Performance
= Power
= Temperature
= User experience
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SUMMARY .

Huge advances have been made in low-power design and power management
techniques, enabling the mobile revolution.

Significant challenges remain in the areas of power and thermal.

Three such challenges from a semiconductor company point-of-view include:
= Process-variability-aware power management.
= Thermally aware power management.

= Thermal management.

Broadcom mobile chipsets today feature multiple such advanced technologies.

Broadcom is actively pursuing research and development in each of these areas.
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